Skip to main content
Log in

The ability of immobilized bacterial consortia and strains from river biofilms to degrade the carbamate pesticide methomyl

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Complex microbial communities from river biofilms might contain microorganisms capable of degrading xenobiotic pollutants such as pesticides (e.g. methomyl, which is commonly detected in rivers). Therefore, this study was used to determine the methomyl degradation potential of bacteria consortia and single bacterial strains acclimatized and isolated from natural river biofilms to provide biomaterials for bioremediation of water that is contaminated with methomyl. Natural river biofilms were culture enriched with methomyl as the sole carbon source to obtain acclimatized bacterial consortia and single bacterial strains. The microbial consortium on the ceramic discs was able to remove 91 % of added methomyl (50 mg l−1) in 7 days. The longer-acclimatized bacterial consortium on loofah sponges removed methomyl more quickly than the shorter-acclimatized consortium, but both had similar removal capabilities (i.e. 92.4 and 92.2 %). This finding suggested that the former might contain more methomyl degraders than the latter. However, after preservation at 25, 4 and −20 °C for 1 or 3 months, the methomyl degradation ability of the bacterial consortia decreased significantly, indicating loss of methomyl degraders during preservation. Three bacterial species were isolated from acclimatized river biofilms, and only one species, identified as Sphingomonas sp., was able to remove methomyl, with a 7-day removal rate of 44.7 % when sugar was added and of 32.5 % when no sugar was added. These results suggested that an additional carbon source might slightly improve the ability of Sphingomonas sp. to degrade methomyl. Acclimatized bacterial consortia have a higher potential for treating methomyl-contaminated water than isolated bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araya R, Yamaguchi N, Tani K, Nasu M (2003) Changes in the bacterial community of natural river biofilm during biodegradation of aniline-derived compounds determined by denaturing gradient gel electrophoresis. J Heal Sci 49(5):379–385

    Article  CAS  Google Scholar 

  • Carvalho MF, Alves CCT, Ferreira MIM, De Marco P, Castro PM (2002) Isolation and initial characterization of a bacterial consortium able to mineralized fluorobenzene. Appl Environ Microbiol 68(1):102–105

    Article  CAS  Google Scholar 

  • Chang YJ, Stephen JR, Richter AP, Venosa AD, Brüggemann J, Macnaughton SJ, Kowalchuk GA, Haines JR, Kline E, White DC (2000) Phylogenetic analysis of aerobic freshwater and marine enrichment culture efficient in hydrocarbon degradation: effect of profiling method. J Microbiol Method 40(1):19–31

    Article  CAS  Google Scholar 

  • Crump BC, Bahr GW, Michele B, Hobbie JE (2003) Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69(4):2253–2268

    Article  Google Scholar 

  • Dasgupta D, Ghosh R, Sengupta TK (2013) Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. ISRN Biotechnol 2013:1–13

    Article  Google Scholar 

  • El-Fakharany II, Massoud AH, Derbalah AS, Saad Allah MS (2011) Toxicological effects of methomyl and remediation technologies of its residues in an aquatic system. J Environ Chem Ecotoxicol 3(13):332–339

    CAS  Google Scholar 

  • Farré M, Fernandez J, Paez M, Granada L, Barba L, Gutierrez HM, Pulgarin C, Barceló D (2002) Analysis and toxicity of methomyl and ametryn after biodegradation. Anal Bioanal Chem 373(8):704–709

    Article  Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62(2):340–346

    CAS  Google Scholar 

  • Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC (1995) Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 61(5):1917–1922

    CAS  Google Scholar 

  • Harms H, Wilkes H, Wittich RM, Fortnagel P (1995) Metabolism of hydroxydibenzofurans, methoxydibenzofurans, acetoxydibenzofurans and nitrobenzofurans by Sphingomonas sp. strain HH69. Appl Environ Microbiol 61(7):2499–2505

    CAS  Google Scholar 

  • Heuer H, Drsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63(8):3233–3241

    CAS  Google Scholar 

  • Hitchcock AP, Dynes JJ, Lawrence JR, Obst M, Swerhone GDW, Korber DR, Leppard GG (2009) Soft X-ray spectromicroscopy of nickel sorption in a natural river biofilm. Geobiology 7(4):432–453

    Article  CAS  Google Scholar 

  • Huang X, Tian Y, Luo YR, Liu HJ, Zheng W, Zheng TL (2008) Modified sublimation to isolate phenanthrene-degrading bacteria of the genera Sphingomonas and Burkholderia from Xiamen oil port. Mar Poll Bull 57(6–12):538–543

    Article  CAS  Google Scholar 

  • Huertas MJ, Luque-Almagro VM, Martínez-Luque M, Blasco R, Moreno-Vivián C, Castillo F, Roldán MD (2006) Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores. Biochem Soc Trans 34(Pt 1):152–155

    CAS  Google Scholar 

  • Imai Y, Kuwatsuka S (1986) The mode of metabolism of the herbicide molinate by four strains of microorganisms isolated from soil. J Pest Sci 11(2):111–117

    Article  CAS  Google Scholar 

  • Lang E, Malik KA (1996) Maintenance of biodegradation capacities of aerobic bacteria during long-term preservation. Biodegradation 7(1):65–71

    Article  CAS  Google Scholar 

  • Lawrence JR, Kopf G, Headley JV, Neu TR (2001) Sorption and metabolism of selected herbicides in river biofilm communities. Can J Microbiol 47(7):634–641

    Article  CAS  Google Scholar 

  • Lyautey E, Lacoste B, Ten-Hage L, Rols J-L, Garabetian F (2005) Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: methodological settings and fingerprints interpretation. Water Res 39(2–3):380–388

    Article  CAS  Google Scholar 

  • Madhuri RJ, Rangaswamy V (2009) Biodegradation of selected insecticides by Bacillus and Pseudomonas sps in ground nut fields. Toxicol Inter 16(2):127–132

    Google Scholar 

  • Malato S, Blanco J, Cáceres J, Fernández-Alba AR, Agüera A, Rodríguez A (2002) Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catal Today 76(2–4):209–220

    Article  CAS  Google Scholar 

  • Mohamed MS (2009) Degradation of methomyl by the novel bacterial strain Stenotrophomonas maltophilia M1. Electron J Biotechnol 12(4):1–6

  • Muyzer G, deWall EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    CAS  Google Scholar 

  • Nagas H, Pattanasupong A, Sugimoto E, Tani K, Nasu M, Hirata K, Miyamoto K (2006) Effect of environmental factors on performance of immobilized consortium system for degradation of carbendazim and 2,4-dichlorophenoxyacetic acid in continuous culture. Biochem Eng J 29(1):163–168

    Article  Google Scholar 

  • Nam IH, Chang YS, Hong HB, Lee YE (2003) A novel catabolic activity of Pseudomonas veronii in biotransformation of pentachlorophenol. Appl Microbiol Biotechnol 62(2–3):284–290

    Article  CAS  Google Scholar 

  • Ni’matuzahroh, Gilewicz M, Guiliano M, Bertrand JC (1999) In-vitro study of interaction between photooxidation and biodegradation of 2-methylphenanthrene by Sphingomonas sp. 2MPII. Chemosphere 38(11):2501–2507

  • Norhani J, Firdausi R (2008) Microbial consortia from residential wastewater for bioremediation of phenol in a chemostat. J Teknol 48(F):51–60

  • Ohshiro K, Kakuta T, Sakai T, Hirota H, Hoshino T, Uchiyama T (1996) Biodegradation of organophosphorus insecticides by bacteria isolated from turf green soil. J Ferm Bioeng 82(3):299–305

    Article  CAS  Google Scholar 

  • O’Mahony MM, Dobson AD, Barnes JD, Singleton I (2006) The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere 63(2):307–314

    Article  Google Scholar 

  • Pattanasupong A, Nagase H, Inoue M, Hirata K, Tani K, Nasu M, Miyamoto K (2004a) Ability of a microbial consortium to remove pesticide, carbendazim and 2,4-dichlorophenoxyacteic acid. World J Microbiol Biotechnol 20(5):517–522

    Article  CAS  Google Scholar 

  • Pattanasupong A, Nagase H, Sugimoto E, Hori Y, Hirata K, Tani K, Nasu M, Miyamoto K (2004b) Degradation of carbendazim and 2,4-dichlorophenoxyacetic acid by immobilized consortium on loofa sponge. J Biosci Bioeng 98(1):28–33

    Article  CAS  Google Scholar 

  • Rowan A, Snape J, Fearnside D, Barer M, Curtis T, Head I (2003) Composition and diversity of ammonia-oxidizing bacterial communities in wastewater treatment Reactors of different design treating identical wastewater. FEMS Microbiol Ecol 43(2):195–206

    Article  CAS  Google Scholar 

  • Schmidt S, Witttich RM, Erdmann D, Wilkes H, Francke W, Fortnagel P (1992) Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. App. Environ Microbiol 58(9):2744–2750

    CAS  Google Scholar 

  • Sharmila M, Ramanand K, Sethunathan N (1989) Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Can J Microbiol 35(12):1105–1110

    Article  CAS  Google Scholar 

  • Singh R, Trivedi VD, Phale PS (2013) Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6. Arch Microbiol 195(8):521–535

    Article  CAS  Google Scholar 

  • Tamboli DP, Kurade MB, Waghmodeb TR, Joshi SM, Govindwar SP (2010) Exploring the ability of Sphingobacterium sp. ATM to degrade textile dye Direct Blue GLL, mixture of dyes and textile effluent and production of polyhydroxyhexadecanoic acid using waste biomass generated after dye degradation. J Hazard Mater 182(1–3):169–176

    Article  CAS  Google Scholar 

  • Tien C-J, Chuang T-L, Chen CS (2011) The role of naturally occurring river biofilms on the degradation kinetics of diazinon. Clean: Soil, Air, Water 39(10):931–938

    CAS  Google Scholar 

  • Tien C-J, Lin M-C, Chiu W-H, Chen CS (2013) Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilms community structure. Environ Poll 179:95–104

    Article  CAS  Google Scholar 

  • USEPA (1998) Reregistration eligibility decision (RED)- Methomyl List A, Case 0028. EPA 738-R-98-021. Office of Prevention, Pesticides and Toxic Substances (7508C), United States Environmental Protection Agency, Washington, DC, 20460

  • Van Scoy AR, Yue M, Deng X, Tjeerdema RS (2013) Environmental fate and toxicology of methomyl. Rev Environ Contam Toxicol 222:93–109

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    CAS  Google Scholar 

  • White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7(3):301–306

    Article  CAS  Google Scholar 

  • Wittich RM, Wilkes H, Sinnwell V, Francke W, Fortnagel P (1992) Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol 58(3):1005–1010

    CAS  Google Scholar 

  • Xu J-L, Wu J, Wang Z-C, Wang K, Li M-Y, Jiang J-D, He J, Li S-P (2009) Isolation and characterization of a methomyl-degrading Paracocus sp. mdw-1. Pedosphere 19(2):238–243

    Article  CAS  Google Scholar 

  • Ye YF, Min H, Du YF (2004) Characterization of a strain of Sphingobacterium sp. and its degradation to herbicide mefenacet. J Environ Sci (China) 16(2):343–347

Download references

Acknowledgments

This work was funded by National Science Council, Taiwan with the project no. NSC96-2313-B-017-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-J. Tien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C.S., Wu, TW., Wang, HL. et al. The ability of immobilized bacterial consortia and strains from river biofilms to degrade the carbamate pesticide methomyl. Int. J. Environ. Sci. Technol. 12, 2857–2866 (2015). https://doi.org/10.1007/s13762-014-0675-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0675-z

Keywords

Navigation