Skip to main content
Log in

Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas sp. strains C4, C5 and C6 degrade carbaryl (1-naphthyl N-methylcarbamate) via 1-naphthol, 1,2-dihydroxynaphthalene, salicylate and gentisate. Carbon source-dependent metabolic studies suggest that enzymes responsible for carbaryl degradation are probably organized into ‘upper’ (carbaryl to salicylate), ‘middle’ (salicylate to gentisate) and ‘lower’ (gentisate to TCA cycle) pathway. Carbaryl and 1-naphthol were found to induce all carbaryl pathway enzymes, while salicylate and gentisate induce middle and lower pathway enzymes. The strains were found to harbor plasmid(s), and carbaryl degradation property was found to be stable. Genes encoding enzymes of the degradative pathway such as 1-naphthol 2-hydroxylase, salicylaldehyde dehydrogenase, salicylate 5-hydroxylase and gentisate 1,2-dioxygenase were amplified from chromosomal DNA of these strains. The gene-specific PCR products were sequenced from strain C6, and phylogenetic tree was constructed. Southern hybridization and PCR analysis using gel eluted DNA as template supported the presence of pathway genes onto the chromosome and not on the plasmid(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MSM:

Minimal salt medium

CH:

Carbaryl hydrolase

1NH:

1-Naphthol 2-hydroxylase

12DHNDO:

1,2-Dihydroxynaphthalene dioxygenase

HBHA:

trans-o-Hydroxybenzylidenepyruvate hydratase–aldolase

SALDH:

Salicylaldehyde dehydrogenase

S5H:

Salicylate 5-hydroxylase

GDO:

Gentisate 1,2-dioxygenase

CDO:

Catechol dioxygenase

C12DO:

Catechol 1,2-dioxygenase

C23DO:

Catechol 2,3-dioxygenase

S1H:

Salicylate 1-hydroxylase

ANDO:

Anthranilate 1,2-dioxygenase

PPAD:

3-Phenylpropionate/cinnamic acid dioxygenase

RHO:

Ring-hydroxylating oxygenases

BPDO:

Biphenyl 2,3-dioxygenase

PPDO:

Phenyl propionate dioxygenase

References

  • Anderson DG, McKay LL (1983) Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol 46:549–552

    PubMed  CAS  Google Scholar 

  • Arenghi FL, Berlanda D, Galli E, Sello G, Barbieri P (2001) Organization and regulation of meta cleavage pathway genes for toluene and o-xylene derivative degradation in Pseudomonas stutzeri OX1. Appl Environ Microbiol 67:3304–3308

    Article  PubMed  CAS  Google Scholar 

  • Basu A, Phale PS (2008) Conjugative transfer of preferential utilization of aromatic compounds from Pseudomonas putida CSV86. Biodegradation 19:83–92

    Article  PubMed  CAS  Google Scholar 

  • Basu A, Dixit SS, Phale PS (2003) Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86. Appl Microbiol Biotechnol 62:579–585

    Article  PubMed  CAS  Google Scholar 

  • Bollag JM, Liu SY (1972) Fungal degradation of 1-naphthol. Can J Microbiol 18:1113–1117

    Article  PubMed  CAS  Google Scholar 

  • Bollag JM, Liu KC (1974) Effect of methylendioxyphenyl synergists on metabolism of carbaryl by Aspergillus terreus. Experientia 30:1374–1375

    Article  PubMed  CAS  Google Scholar 

  • Bollag JM, Czaplicki EJ, Minard RD (1975) Bacterial metabolism of 1-naphthol. J Agric Food Chem 23:85–90

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chae JC, Kim CK, Zylstra GJ (2005) Characterization of two small cryptic plasmids from Pseudomonas sp. strain S-47. Biochem Biophys Res Commun 338:1600–1606

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty AM (1972) Genetic basis of the biodegradation of salicylate in Pseudomonas. J Bacteriol 112:815–823

    PubMed  CAS  Google Scholar 

  • Chang HK, Zylstra GJ (1998) Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 180:6529–6537

    PubMed  CAS  Google Scholar 

  • Chapalamadugu S, Chaudhry GR (1991) Hydrolysis of carbaryl by a Pseudomonas sp. and construction of a microbial consortium that completely metabolizes carbaryl. Appl Environ Microbiol 57:744–750

    PubMed  CAS  Google Scholar 

  • Chen L, Wang W, Sun W, Surette M, Duan K (2010) Characterization of a cryptic plasmid from Pseudomonas sp. and utilization of its temperature-sensitive derivatives for genetic manipulation. Plasmid 64:110–117

    Article  PubMed  CAS  Google Scholar 

  • De MR, Nagy I, De SA, Pattanapipitpaisal P, Schoofs G, Vanderleyden J (1997) Structural analysis of the 6 kb cryptic plasmid pFAJ2600 from Rhodococcus erythropolis NI86/21 and construction of Escherichia coli-Rhodococcus shuttle vectors. Microbiology 143(Pt 10):3137–3147

    Google Scholar 

  • Dennis JJ (2005) The evolution of IncP catabolic plasmids. Curr Opin Biotechnol 16:291–298

    Article  PubMed  CAS  Google Scholar 

  • Doddamani HP, Ninnekar HZ (2001) Biodegradation of carbaryl by a Micrococcus species. Curr Microbiol 43:69–73

    Article  PubMed  CAS  Google Scholar 

  • Dunn NW, Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol 114:974–979

    PubMed  CAS  Google Scholar 

  • Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65:7–17

    Article  PubMed  CAS  Google Scholar 

  • Elespuru R, Lijinsky W, Setlow JK (1974) Nitrosocarbaryl as a potent mutagen of environmental significance. Nature 247:386–387

    Article  PubMed  CAS  Google Scholar 

  • Eppink MH, Schreuder HA, Van Berkel WJ (1997) Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding. Protein Sci 6:2454–2458

    Article  PubMed  CAS  Google Scholar 

  • Fiore MF, Moon DH, Tsai SM, Lee H, Trevors JT (2000) Miniprep DNA isolation from unicellular and filamentous cyanobacteria. J Microbiol Methods 39:159–169

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Takeo M, Maeda Y (1997) Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology 143(Pt 1):93–99

    Article  PubMed  CAS  Google Scholar 

  • Gaillard M, Vallaeys T, Vorholter FJ, Minoia M, Werlen C, Sentchilo V, Puhler A, van der Meer JR (2006) The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J Bacteriol 188:1999–2013

    Article  PubMed  CAS  Google Scholar 

  • Gotz A, Pukall R, Smit E, Tietze E, Prager R, Tschape H, van Elsas JD, Smalla K (1996) Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol 62:2621–2628

    PubMed  CAS  Google Scholar 

  • Grund E, Denecke B, Eichenlaub R (1992) Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl Environ Microbiol 58:1874–1877

    PubMed  CAS  Google Scholar 

  • Hansen JB, Olsen RH (1978) Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. J Bacteriol 135:227–238

    PubMed  CAS  Google Scholar 

  • Hashimoto M, Fukui M, Hayano K, Hayatsu M (2002) Nucleotide sequence and genetic structure of a novel carbaryl hydrolase gene (cehA) from Rhizobium sp. strain AC100. Appl Environ Microbiol 68:1220–1227

    Article  PubMed  CAS  Google Scholar 

  • Hayatsu M, Hirano M, Nagata T (1999) Involvement of two plasmids in the degradation of carbaryl by Arthrobacter sp. strain RC100. Appl Environ Microbiol 65:1015–1019

    PubMed  CAS  Google Scholar 

  • Hodkinson B, Lutzoni F (2009) A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49:163–180

    Article  CAS  Google Scholar 

  • Jouanneau Y, Micoud J, Meyer C (2007) Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1. Appl Environ Microbiol 73:7515–7521

    Article  PubMed  CAS  Google Scholar 

  • Kado CI, Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373

    PubMed  CAS  Google Scholar 

  • Khan AA, Walia SK (1991) Expression, localization, and functional analysis of polychlorinated biphenyl degradation genes cbpABCD of Pseudomonas putida. Appl Environ Microbiol 57:1325–1332

    PubMed  CAS  Google Scholar 

  • Kojima Y, Fujisawa H, Nakazawa A, Nakazawa T, Kanetsuna F, Taniuchi H, Nozaki M, Hayaishi O (1967) Studies on pyrocatechase. I. Purification and spectral properties. J Biol Chem 242:3270–3278

    PubMed  CAS  Google Scholar 

  • Krasowiak R, Smalla S, Sokolov S, Kosheleva I, Titok M, Thomas CM (2002) PCR primers for detection and characterization of IncP-9 plasmids. FEMS Microbiol Ecol 42:217–225

    Article  PubMed  CAS  Google Scholar 

  • Larkin MJ, Day MJ (1986) The metabolism of carbaryl by three bacterial isolates, Pseudomonas sp. (NCIB 12042 & 12043) and Rhodococcus sp. (NCIB 12038) from garden soil. J Appl Bacteriol 60:233–242

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Bollag JM (1971) Metabolism of carbaryl by a soil fungus. J Agric Food Chem 19:487–490

    Article  Google Scholar 

  • Mesas JM, Rodriguez MC, Alegre MT (2004) Plasmid curing of Oenococcus oeni. Plasmid 51:37–40

    Article  PubMed  CAS  Google Scholar 

  • Minas W, Gutnick DL (1993) Isolation, characterization, and sequence analysis of cryptic plasmids from Acinetobacter calcoaceticus and their use in the construction of Escherichia coli shuttle plasmids. Appl Environ Microbiol 59:2807–2816

    PubMed  CAS  Google Scholar 

  • Nozaki M, Ono K, Nakazawa T, Kotani S, Hayaishi O (1968) Metapyrocatechase. II. The role of iron and sulfhydryl groups. J Biol Chem 243:2682–2690

    PubMed  CAS  Google Scholar 

  • Obulakondaiah M, Sreenivasulu C, Venkateswarlu K (1993) Nontarget effects of carbaryl and its hydrolysis product, 1-naphthol, towards Anabaena torulosa. Biochem Mol Biol Int 29:703–710

    PubMed  CAS  Google Scholar 

  • Rajgopal BS, Rao VR, Nagendraappa G, Sethunathan N (1984) Metabolism of carbaryl and carbofuran by soil enrichment and bacterial cultures. Can J Microbiol 30:1458–1466

    Article  Google Scholar 

  • Rickard RW, Dorough HW (1984) In vivo formation of nitrosocarbamates in the stomach of rats and guinea pigs. J Toxicol Environ Health 14:279–290

    Article  PubMed  CAS  Google Scholar 

  • Sah S, Phale PS (2011) 1-Naphthol 2-hydroxylase from Pseudomonas sp. strain C6: purification, characterization and chemical modification studies. Biodegradation 22:517–526

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shamsuzzaman KM, Barnsley EA (1974) The regulation of naphthalene metabolism in pseudomonads. Biochem Biophys Res Commun 60:582–589

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Berry ES (1983) Toxicity and intracellular localization of carbaryl and 1-naphthol in cell cultures derived from goldfish. Bull Environ Contam Toxicol 30:99–104

    Article  PubMed  CAS  Google Scholar 

  • Sikka HC, Miyazaki S, Lynch RS (1975) Degradation of carbaryl and 1-naphthol by marine microorganisms. Bull Environ Contam Toxicol 13:666–672

    Article  PubMed  CAS  Google Scholar 

  • Smulders CJ, Bueters TJ, Van Kleef RG, Vijverberg HP (2003) Selective effects of carbamate pesticides on rat neuronal nicotinic acetylcholine receptors and rat brain acetylcholinesterase. Toxicol Appl Pharmacol 193:139–146

    Article  PubMed  CAS  Google Scholar 

  • Stingley RL, Brezna B, Khan AA, Cerniglia CE (2004) Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 150:3749–3761

    Article  PubMed  CAS  Google Scholar 

  • Suarez M, Ferrer E, Garrido-Pertierra A, Martin M (1995) Purification and characterization of the 3-hydroxybenzoate 6-hydroxylase from Klebsiella pneumoniae. FEMS Microbiol Lett 126:283–290

    Article  PubMed  CAS  Google Scholar 

  • Sud RK, Sud AK, Gupta KG (1972) Degradation of sevin (1-naphthyl-N-methyl carbamate) by Achromobacter sp. Arch Microbiol 87:353–358

    CAS  Google Scholar 

  • Suemori A, Kurani R, Tomizuka N (1993) Purification and properties of 3 types of monohydroxybenzoate oxygenase from Rhodococcus erythropolis S1. Biosci Biotechnol Biochem 57:1487–1491

    Article  CAS  Google Scholar 

  • Swetha VP, Phale PS (2005) Metabolism of carbaryl via 1,2-dihydroxynaphthalene by soil isolates Pseudomonas sp. strains C4, C5, and C6. Appl Environ Microbiol 71:5951–5956

    Article  PubMed  CAS  Google Scholar 

  • Swetha VP, Basu A, Phale PS (2007) Purification and characterization of 1-naphthol 2-hydroxylase from carbaryl-degrading Pseudomonas sp. strain C4. J Bacteriol 189:2660–2666

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thuring RW, Sanders JP, Borst P (1975) A freeze-squeeze method for recovering long DNA from agarose gels. Anal Biochem 66:213–220

    Article  PubMed  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  Google Scholar 

  • Vivian A (1994) Plasmid expansion? Microbiology 140(Pt 2):213–214

    Article  PubMed  Google Scholar 

  • Walker N, Janes NF, Spokes JR, Van Berkum P (1975) Degradation of 1-naphthol by a soil pseudomonad. J Appl Bacteriol 39:281–286

    Article  PubMed  CAS  Google Scholar 

  • Wheatcroft R, Williams PA (1981) Rapid methods for the study of both stable and unstable plasmids in Pseudomonas. J Gen Microbiol 124:433–437

    PubMed  CAS  Google Scholar 

  • Wilson GD, d’Arcy DM, Cohen GM (1985) Selective toxicity of 1-naphthol to human colorectal tumour tissue. Br J Cancer 51:853–863

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Liu Y, Liu YH (2003) Purification and characterization of a novel carbaryl hydrolase from Aspergillus niger PY168. FEMS Microbiol Lett 228:39–44

    Article  PubMed  CAS  Google Scholar 

  • Zhao DL, Yu ZC, Li PY, Wu ZY, Chen XL, Shi M, Yu Y, Chen B, Zhou BC, Zhang YZ (2011) Characterization of a cryptic plasmid pSM429 and its application for heterologous expression in psychrophilic Pseudoalteromonas. Microb Cell Fact 10:30

    Article  PubMed  CAS  Google Scholar 

  • Zhou NY, Al-Dulayymi J, Baird MS, Williams PA (2002) Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. J Bacteriol 184:1547–1555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the research fellowship to RS and VDT from CSIR, Govt. of India and the research grant to PP from DBT, Govt. of India. Thanks to Dr. Smalla K, Institute for biochemistry and plant virology, Braunschweig, Germany, for providing standard plasmids for the incompatibility group classification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant S. Phale.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 934 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Trivedi, V.D. & Phale, P.S. Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6. Arch Microbiol 195, 521–535 (2013). https://doi.org/10.1007/s00203-013-0903-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0903-9

Keywords

Navigation