Skip to main content
Log in

Fuzzy sets across the natural language generation pipeline

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

We explore the implications of using fuzzy techniques (mainly those commonly used in the linguistic description/summarization of data discipline) from a natural language generation perspective. For this, we provide an extensive discussion of some general convergence points and an exploration of the relationship between the different tasks involved in the standard natural language generation system pipeline architecture and the most common fuzzy approaches used in linguistic summarization/description of data, such as fuzzy quantified statements, evaluation criteria or aggregation operators. Each individual discussion is illustrated with a related use case. Recent work made in the context of cross-fertilization of both research fields is also referenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. This technique is commonly known in NLG as “corpus” analysis and is performed systematically in the early conception stages of an NLG system [28].

  2. Note that we are using actual natural language expressions to illustrate lexicalization, but this task actually involves creating new sets of structures which define an intermediate syntax between the original content messages and the actual text [27].

References

  1. SoftLearn Demo (2015) http://tec.citius.usc.es/SoftLearn/

  2. Castillo-Ortega, R., Chamorro-Martínez, J., Marín, N., Sánchez, D., Soto-Hidalgo, J.M.: Describing images via linguistic features and hierarchical segmentation. In: Fuzzy systems (FUZZ), 2010 IEEE International Conference, pp. 1–8 (2010). doi:10.1109/FUZZY.2010.5584443

  3. van Deemter, K.: Generating referring expressions that involve gradable properties. Comput. Linguist. 32(2), 195–222 (2006). doi:10.1162/coli.2006.32.2.195

    Article  MATH  Google Scholar 

  4. van Deemter, K.: Utility and language generation: the case of vagueness. J. Philos. Log. 38(6), 607–632 (2009). doi:10.1007/s10992-009-9114-x

    Article  MathSciNet  MATH  Google Scholar 

  5. Delgado, M., Ruiz, M.D., Sánchez, D., Vila, M.A.: Fuzzy quantification: a state of the art. Fuzzy Sets Syst. 242, 1–30 (2014). doi:10.1016/j.fss.2013.10.012 (theme: Quantifiers and Logic)

  6. Díaz-Hermida, F., Ramos-Soto, A., Bugarín, A.: On the role of fuzzy quantified statements in linguistic summarization. In: Proceedings of 11th International conference on. intelligent systems design and applications (ISDA), pp. 166–171 (2011)

  7. Diaz-Hermida F, Pereira-Fariña M, Vidal JC, Ramos-Soto A (2016) Characterizing quantifier fuzzification mechanisms: a behavioral guide for practical applications. arXiv:1605.03506

  8. Eciolaza, L., Pereira-Fariña, M., Trivino, G.: Automatic linguistic reporting in driving simulation environments. Appl. Soft Comput. 13(9), 3956–3967 (2013)

    Article  Google Scholar 

  9. Gatt, A., Belz, A.: Introducing shared tasks to nlg: the tuna shared task evaluation challenges. In: Krahmer, E., Theune, M. (eds.) Empirical methods in natural language generation, Lecture notes in computer science, vol. 5790, pp. 264–293. Springer, Berlin, Heidelberg, (2010). doi:10.1007/978-3-642-15573-4_14

  10. Gatt, A., Portet, F.: Multilingual generation of uncertain temporal expressions from data: a study of a possibilistic formalism and its consistency with human subjective evaluations. Fuzzy Sets Syst. 285, 73–93 (2016). doi:10.1016/j.fss.2015.07.018. http://www.sciencedirect.com/science/article/pii/S0165011415003590 (special Issue on Linguistic Description of Time Series)

  11. Gatt, A., Marín, N., Portet, F., Sánchez, D.: The role of graduality for referring expression generation in visual scenes. In: Information processing and management of uncertainty in knowledge-based systems: 16th International Conference, IPMU 2016, Eindhoven, The Netherlands, June 20–24, 2016, Proceedings, Part I, pp. 191–203. Springer International Publishing (2016). doi:10.1007/978-3-319-40596-4_17

  12. Glöckner, I., Knoll, A.: Application of fuzzy quantifiers in image processing: a case study. In: Proceedings of the third international conference on knowledge-based intelligent information engineering systems, pp. 259–262 (1999)

  13. Hunter, J., Freer, Y., Gatt, A., Reiter, E., Sripada, S., Sykes, C.: Automatic generation of natural language nursing shift summaries in neonatal intensive care: Bt-nurse. Artif. Intell. Med. 56(3), 157–172 (2012). doi:10.1016/j.artmed.2012.09.002

    Article  Google Scholar 

  14. Kacprzyk, J., Zadrozny, S.: Protoforms of linguistic database summaries as a human consistent tool for using natural language in data mining. Int. J. Softw. Sci. Comput. Intell. (IJSSCI) 1(1), 100–111 (2009). doi:10.4018/jssci.2009010107

    Article  Google Scholar 

  15. Kacprzyk, J., Zadrozny, S.: Computing with words is an implementable paradigm: fuzzy queries, linguistic data summaries, and natural-language generation. Fuzzy Syst. IEEE Trans. 18(3), 461–472 (2010). doi:10.1109/TFUZZ.2010.2040480

    Article  MathSciNet  Google Scholar 

  16. Marín, N., Sánchez, D.: Fuzzy sets and systems + natural language generation: a step forward in the linguistic description of time series. Fuzzy Sets Syst. 285, 1–5 (2016a). doi:10.1016/j.fss.2015.12.003. http://www.sciencedirect.com/science/article/pii/S0165011415005758 (special Issue on Linguistic Description of Time Series)

  17. Marín, N., Sánchez, D.: On generating linguistic descriptions of time series. Fuzzy Sets Syst. 285, 6–30 (2016b). doi:10.1016/j.fss.2015.04.014 (special Issue on Linguistic Description of Time Series)

  18. de Oliveira, R., Sripada, Y., Reiter, E.: Proceedings of the 15th European workshop on natural language generation (ENLG), association for computational linguistics, chap designing an algorithm for generating named spatial references, pp. 127–135 (2015)

  19. Portet, F., Gatt, A.: Towards a possibility-theoretic approach to uncertainty in medical data interpretation for text generation. In: Riaño, D., ten Teije, A., Miksch, S., Peleg, M. (eds.) Knowledge Representation for Health-Care. Data, processes and guidelines, Lecture notes in computer science, vol. 5943, pp. 155–168. Springer, Berlin, Heidelberg (2010). doi:10.1007/978-3-642-11808-1_13

  20. Portet, F., Reiter, E., Gatt, A., Hunter, J., Sripada, S., Freer, Y., Sykes, C.: Automatic generation of textual summaries from neonatal intensive care data. Artif. Intell. 173(7–8), 789–816 (2009). doi:10.1016/j.artint.2008.12.002

    Article  Google Scholar 

  21. Power, R., Williams, S.: Generating numerical approximations. Comput. Linguist. 38(1), 113–134 (2012). doi:10.1162/COLI_a_00086

    Article  Google Scholar 

  22. Ramos-Soto, A., Bugarín, A., Barro, S., Diaz-Hermida, F.: Automatic linguistic descriptions of meteorological data: a soft computing approach for converting open data to open information. In: 8th Iberian conference on information systems and technologies, pp. 1–6 (2013)

  23. Ramos-Soto, A., Bugarín, A., Barro, S., Taboada, J.: Linguistic descriptions for automatic generation of textual short-term weather forecasts on real prediction data. Fuzzy Syst. IEEE Trans. 23(1), 44–57 (2015a). doi:10.1109/TFUZZ.2014.2328011

    Article  Google Scholar 

  24. Ramos-Soto, A., Pereira-Farina, M., Bugarin, A., Barro, S.: A model based on computational perceptions for the generation of linguistic descriptions of data. In: Fuzzy systems (FUZZ-IEEE), 2015 IEEE international conference on, pp. 1–8 (2015b). doi:10.1109/FUZZ-IEEE.2015.7337923

  25. Ramos-Soto, A., Bugarín, A., Barro, S.: On the role of linguistic descriptions of data in the building of natural language generation systems. Fuzzy Sets Syst. 285, 31–51 (2016). doi:10.1016/j.fss.2015.06.019

    Article  MathSciNet  Google Scholar 

  26. Reiter, E.: An architecture for data-to-text systems. In: Busemann, S. (ed.) Proceedings of the 11th European workshop on natural language generation, pp. 97–104 (2007)

  27. Reiter, E., Dale, R.: Building natural language generation systems. cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  28. Reiter, E., Sripada, S., Hunter, J., Davy, I.: Choosing words in computer-generated weather forecasts. Artif. Intell. 167, 137–169 (2005)

    Article  Google Scholar 

  29. Rodriguez-Fdez, I., Mucientes, M., Bugarin, A.: Reducing the complexity in genetic learning of accurate regression tsk rule-based systems. In: Fuzzy systems (FUZZ-IEEE), 2015 IEEE international conference, pp. 1–8 (2015)

  30. Sripada, S.G., Burnett, N., Turner, R., Mastin, J., Evans, D.: A case study: NLG meeting weather industry demand for quality and quantity of textual weather forecasts. In: INLG-2014 Proceedings (2014)

  31. Turner, R., Sripada, S., Reiter, E., Davy, I.P.: Selecting the content of textual descriptions of geographically located events in spatio-temporal weather data. Appl. Innov. Intell. Syst. XV, 75–88 (2007)

    Google Scholar 

  32. Turner, R., Sripada, S., Reiter, E., Davy, I.P.: Using spatial reference frames to generate grounded textual summaries of georeferenced data. In: Proceedings of the fifth international natural language generation conference, Association for computational linguistics, Stroudsburg, INLG ’08, pp. 16–24 (2008)

  33. Turner, R., Sripada, S., Reiter, E.: Generating approximate geographic descriptions. In: Krahmer, E., Theune, M. (eds.) Empirical methods in natural language generation, lecture notes in computer science, vol. 5790, pp. 121–140. Springer, Berlin, Heidelberg (2010). doi:10.1007/978-3-642-15573-4_7

  34. Van Deemter, K., Krahmer, E., Theune, M.: Real versus template-based natural language generation: a false opposition? Comput. Linguist. 31(1), 15–24 (2005). doi:10.1162/0891201053630291

  35. Vázquez-Barreiros, B., Lama, M., Mucientes, M., Vidal, J.C.: Softlearn: A process mining platform for the discovery of learning paths. In: 14th international conference on advanced learning technologies (ICALT 2014), pp. 373–375. IEEE Press (2014)

  36. Wilbik, A., Kaymak, U.: Information Processing and management of uncertainty in knowledge-based systems: 15th International Conference, IPMU 2014, Montpellier, France, July 15–19, 2014, Proceedings, Part II, Springer International Publishing, chap Gradual Linguistic Summaries, pp. 405–413 (2014). doi:10.1007/978-3-319-08855-6_41

  37. Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. Syst. Man Cybern. IEEE Trans. 18(1), 183–190 (1988). doi:10.1109/21.87068

    Article  MathSciNet  MATH  Google Scholar 

  38. Yager, R.R.: A new approach to the summarization of data. Inf. Sci. 28(1), 69–86 (1982). doi:10.1016/0020-0255(82)90033-0

    Article  MathSciNet  MATH  Google Scholar 

  39. Yu, J., Hunter, J., Reiter, E., Sripada, S.: An approach to generating summaries of time series data in the gas turbine domain. In: Proceedings of IEEE international conference on Info-tech & Info-net (ICII2001), Beijing, pp. 44–51 (2001)

  40. Yu, J., Reiter, E., Hunter, J., Sripada, S.: Sumtime-turbine: a knowledge-based system to communicate gas turbine time-series data. In: Chung, P., Hinde, C., Ali, M. (eds.) Developments in applied artificial intelligence, Lecture notes in computer science, vol. 2718, pp. 379–384. Springer, Berlin, Heidelberg (2003) doi:10.1007/3-540-45034-3_38

  41. Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9, 149–184 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zadeh, L.A.: A prototype-centered approach to adding deduction capability to search engines-the concept of protoform. In: Intelligent systems, 2002. Proceedings. 2002 First International IEEE Symposium, vol. 1, pp. 2–3 (2002). doi:10.1109/IS.2002.1044219

  43. Zimmermann, H.J., Zysno, P.: Latent connectives in human decision making. Fuzzy Sets Syst. 4(1), 37–51 (1980). doi:10.1016/0165-0114(80)90062-7

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ramos-Soto.

Additional information

This work was supported by the Spanish Ministry for Economy and Competitiveness (Grant TIN2014-56633-C3-1-R) and by the European Regional Development Fund (ERDF/FEDER) and the Galician Ministry of Education (Grants GRC2014/030 and CN2012/151). Alejandro Ramos Soto (A. Ramos-Soto) is supported by the Spanish Ministry for Economy and Competitiveness (FPI Fellowship Program) under Grant BES-2012-051878.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Soto, A., Bugarín, A. & Barro, S. Fuzzy sets across the natural language generation pipeline. Prog Artif Intell 5, 261–276 (2016). https://doi.org/10.1007/s13748-016-0097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-016-0097-x

Keywords

Navigation