Skip to main content
Log in

High-sensitive amperometric hydrazine sensor based on chemically synthesized zinc nitroprusside nanoparticle-supported carbon ceramic electrode

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Zinc nitroprusside (ZnNP) nanoparticles were fabricated at the surface of zinc powder-doped carbon ceramic electrode (CCE) by a chemical derivatization process. This modified electrode was characterized by scanning electron microscopy, atomic force microscopy and cyclic voltammetry techniques. The charge transfer rate constant (k s) and charge transfer coefficient (α) were calculated for the electron exchange reaction of the ZnNP thin film. The ZnNP nanoparticle-modified CCE (ZnNP|CCE) showed good electrocatalytic activity toward hydrazine oxidation. The limit of detection (S/N = 3) and sensitivity were found to be 0.16 µM and 0.21 µA/µM, respectively. The mechanism of hydrazine electrooxidation at the electrode surface was studied. Finally, the ZnNP|CCE was successfully used for the determination of trace amount of hydrazine in different spiked and real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Garrod, M.E. Bollard, A.W. Nicholls, S.C. Connor, J. Connelly, J.K. Nicholson, E. Holmes, Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat. Chem. Res. Toxicol. 18, 115–122 (2005)

    Article  CAS  Google Scholar 

  2. K. Yamada, K. Yasuda, N. Fujiwara, Z. Siroma, H. Tanaka, Y. Miyazaki, T. Kobayashi, Potential application of anion-exchange membrane for hydrazine fuel cell electrolyte. Electrochem. Commun. 5, 892–896 (2003)

    Article  CAS  Google Scholar 

  3. S. Amlathe, V.K. Gupta, Spectrophotometric determination of trace amounts of hydrazine in polluted water. Analyst 113, 1481–1483 (1988)

    Article  CAS  Google Scholar 

  4. J.W. Mo, B. Ogorevc, X. Zhang, B. Pihlar, Cobalt and copper hexacyanoferrate modified carbon fiber microelectrode as an all-solid potentiometric microsensor for hydrazine. Electroanalysis 12, 48–54 (2000)

    Article  CAS  Google Scholar 

  5. T. Sakamoto, K. Asazawa, U. Martinez, B. Halev, T. Suzuki, S. Arai, D. Matsumur, Y. Nishihata, P. Atanassov, H. Tanaka, Electrooxidation of hydrazine hydrate using Ni–La catalyst for anion exchange membrane fuel cells. J. Power Sources 234, 252–259 (2013)

    Article  CAS  Google Scholar 

  6. H.F. Mark, D.F. Othmer, C.G. Overberger, G.T. Seaborg, Kirk-Othmer Encyclopedia of Chemical Technology, vol. 12 (Wiley, New York, 2005), p. 734

    Google Scholar 

  7. E.H. Vernot, J.D. MacEwen, R.H. Bruner, C.C. Haun, E.R. Kinkead, D.E. Prentice, A. Hall, R.E. Schmidt, R.L. Eason, G.B. Hubbard, J.T. Young, Long-term inhalation toxicity of hydrazine. Fundam. Appl. Toxicol. 5, 1050–1064 (1985)

    Article  CAS  Google Scholar 

  8. D. Steinhoff, U. Mohr, The question of carcinogenic effects of hydrazine. Exp. Pathol. 33, 133–143 (1988)

    Article  CAS  Google Scholar 

  9. Y.Y. Liu, I. Schmeltz, D. Hoffman, Chemical studies on tobacco smoke. Quantitative analysis of hydrazine in tobacco and cigarette smoke. Anal. Chem. 46, 885–889 (1974)

    Article  CAS  Google Scholar 

  10. R. Gilbert, R. Rioux, Ion chromatographic determination of morpholine and cyclohexylamine in aqueous solutions containing ammonia and hydrazine. Anal. Chem. 56, 106–109 (1984)

    Article  CAS  Google Scholar 

  11. M. Shukla, A. Tiwari, N. Brahme, R.S. Kher, S.J. Dhoble, Enhancing effect of hydrazine on chemiluminescence of luminol-H2O2 system. J. Appl. Spec. 80, 305–307 (2013)

    Article  CAS  Google Scholar 

  12. E.I. Morosanova, E.A. Reznikova, A.A. Velikorodnyi, Modified xerogel-based indicator powders for determining ascorbic acid and hydrazines by solid-phase spectrophotometry and visual tests. J. Anal. Chem. 56, 173–177 (2001)

    Article  CAS  Google Scholar 

  13. C.M. Moreno, T. Stadler, A.A. Silva, L.C.A. Barbosa, M.E.L.R. Queiroz, Determination of maleic hydrazide residues in garlic bulbs by HPLC. Talanta 89, 369–376 (2012)

    Article  Google Scholar 

  14. B. Zhou, J. Yang, X. Jiang, Porous Mn2O3 nanorods synthesized from thermal decomposition of coordination polymer and used in hydrazine electrochemical sensing. Mat. Lett. 159, 362–365 (2015)

    Article  CAS  Google Scholar 

  15. P. Malik, M. Srivastava, R. Verma, M. Kumar, D. Kumar, J. Singh, Nanostructured SnO2 encapsulated guar-gum hybrid nanocomposites for electrocatalytic determination of hydrazine. Mat. Sci. Eng. C 58, 432–441 (2016)

    Article  CAS  Google Scholar 

  16. S. Ameen, M.S. Akhtar, H.S. Shin, Highly sensitive hydrazine chemical sensor fabricated by modified electrode of vertically aligned zinc oxide nanorods. Talanta 100, 377–383 (2012)

    Article  CAS  Google Scholar 

  17. V. Mani, A.T. Ezhil Vilian, S.M. Chen, Graphene oxide dispersed carbon nanotube and iron phthalocyanine composite modified electrode for the electrocatalytic determination of hydrazine. Int. J. Electrochem. Sci. 7, 12774–12785 (2012)

    CAS  Google Scholar 

  18. Y. Liu, Y. Li, X. He, In situ synthesis of ceria nanoparticles in the ordered mesoporous carbon as a novel electrochemical sensor for the determination of hydrazine. Anal. Chim. Acta 819, 26–33 (2014)

    Article  CAS  Google Scholar 

  19. H.J. Yang, B.P. Lu, L.P. Guo, B. Qi, Cerium hexacyanoferrate/ordered mesoporous carbon electrode and its application in electrochemical determination of hydrous hydrazine. J. Electroanal. Chem. 650, 171–175 (2011)

    Article  CAS  Google Scholar 

  20. J. Ding, S. Zhu, T. Zhu, W. Sun, Q. Li, G. Wei, Z. Su, Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor. RSC Adv. 5, 22935–22942 (2015)

    Article  CAS  Google Scholar 

  21. M.H. Pournaghi-Azar, H. Nahalparvari, Preparation and characterization of electrochemical and electrocatalytic behavior of a zinc pentacyanonitrosylferrate film-modified glassy carbon electrode. J. Electroanal. Chem. 583, 307–317 (2005)

    Article  CAS  Google Scholar 

  22. H. Razmi, E. Habibi, Nanomolar detection of hydrogen peroxide at a new polynuclear cluster of tin pentacyanonitrosylferrate nanoparticle-modified carbon ceramic electrode. Anal. Biochem. 392, 126–132 (2009)

    Article  CAS  Google Scholar 

  23. H. Razmi, E. Habibi, Preparation and characterization of a tin pentacyanonitrosylferrate-modified carbon ceramic electrode: application to electrocatalytic oxidation and amperometric detection of l-cysteine. Electroanalysis 21, 867–874 (2009)

    Article  CAS  Google Scholar 

  24. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979)

    Article  CAS  Google Scholar 

  25. S.M. Golabi, M. Jalil, Electrocatalytic oxidation of hydrazine at epinephrine modified glassy carbon electrode (EPMGCE). Iran J. Chem. Chem. Eng. 22, 43–54 (2003)

    CAS  Google Scholar 

  26. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001)

    Google Scholar 

  27. F. Pariente, E. Lorenzo, F. Tobalina, H.D. Abruna, Aldehyde biosensor based on the determination of NADH enzymically generated by aldehyde dehydrogenase. Anal. Chem. 67, 3936–3944 (1995)

    Article  CAS  Google Scholar 

  28. H. Ahmar, S. Keshipour, H. Hosseini, A.R. Fakhari, A. shaabani, A. Bagheri, Electrocatalytic oxidation of hydrazine at glassy carbon electrode modified with ethylenediamine cellulose immobilized palladium nanoparticles. J. Electroanal. Chem. 690, 96–103 (2013)

    Article  CAS  Google Scholar 

  29. M.F. Wang, C. Wang, G.F. Wang, W. Zhang, F. Bin, Electroanalysis 22, 1123 (2010)

    Article  CAS  Google Scholar 

  30. G. Wang, C. Zhang, X. He, Z. Li, X. Zhang, L. Wang, B. Fang, Detection of hydrazine based on nano-Au deposited on porous-TiO2 film. Electrochim. Acta 55, 7204–7210 (2010)

    Article  CAS  Google Scholar 

  31. B. Fang, C.H. Zhang, W. Zhang, G.F. Wang, A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode. Electrochim. Acta 55, 178–182 (2009)

    Article  CAS  Google Scholar 

  32. J. Zheng, Q. Sheng, L. Li, Y. Shen, Bismuth hexacyanoferrate-modified carbon ceramic electrodes prepared by electrochemical deposition and its electrocatalytic activity towards oxidation of hydrazine. J. Electroanal. Chem. 611, 155–161 (2007)

    Article  CAS  Google Scholar 

  33. D. Jayasri, S.S. Narayanan, Amperometric determination of hydrazine at manganese hexacyanoferrate modified graphite–wax composite electrode. J. Hazard. Mater. 144, 348–354 (2007)

    Article  CAS  Google Scholar 

  34. C. Zhang, G. Wang, Y. Ji, M. Liu, Y. Feng, Z. Zhang, B. Fang, Enhancement in analytical hydrazine based on gold nanoparticles deposited on ZnO-MWCNTs films. Sens. Actuators B 150, 247–253 (2010)

    Article  CAS  Google Scholar 

  35. S. Mutyala, J. Mathiyarasu, Preparation of graphene nanoflakes and its application for detection of hydrazine. Sens. Actuators B 210, 692–699 (2015)

    Article  CAS  Google Scholar 

  36. A. Ejaz, M.S. Ahmed, S. Jeon, Highly efficient benzylamine functionalized graphene supported palladium for electrocatalytic hydrazine determination. Sens. Actuators B 221, 1256–1263 (2015)

    Article  CAS  Google Scholar 

  37. A. Abbaspour, A. Khajehzadeh, A. Ghaffarinejad, Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode. J. Electroanal. Chem. 631, 52–57 (2009)

    Article  CAS  Google Scholar 

  38. H. Razmi, A. Azadbakht, M. Hossaini-Sadr, Application of a palladium hexacyanoferrate film-modified aluminum electrode to electrocatalytic oxidation of hydrazine. Anal. Sci. 21, 1317–1323 (2005)

    Article  CAS  Google Scholar 

  39. Z. Zhao, Y. Sun, P. Li, W. Zhang, K. Lian, J. Hu, Y. Chen, Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine. Talanta 158, 283–291 (2016)

    Article  CAS  Google Scholar 

  40. F.A. Harraz, A.A. Ismail, S.A. Al-Sayari, A. Al-Hajry, M.S. Al-Assiri, Highly sensitive amperometric hydrazine sensor based on novel α-Fe2O3/crosslinked polyaniline nanocomposite modified glassy carbon electrode. Sens. Actuators B 234, 573–582 (2016)

    Article  CAS  Google Scholar 

  41. N. Miller, J.C. Miller, Statistics and chemometrics for analytical chemistry, 4th edn. (Pearson education limited, London, 2000), p. 121

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of this work by Nanotechnology Research Center of Urmia University and Department of Chemistry Azarbaijan Shahid Madani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Habibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, E., Heidari, H. High-sensitive amperometric hydrazine sensor based on chemically synthesized zinc nitroprusside nanoparticle-supported carbon ceramic electrode. J IRAN CHEM SOC 14, 1301–1308 (2017). https://doi.org/10.1007/s13738-017-1080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1080-6

Keywords

Navigation