Skip to main content

Advertisement

Log in

Satiety Innovations: Food Products to Assist Consumers with Weight Loss, Evidence on the Role of Satiety in Healthy Eating: Overview and In Vitro Approximation

  • Psychological Issues (M Hetherington and V Drapeau, Section Editors)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

The prevalence of overweight and obesity is increasing globally, driven by the availability of energy-dense palatable foods. Most dietary strategies fail because of hunger generated by calorie restriction, and interventions that specifically control hunger and/or promote fullness may aid success. Current consumers have a limited choice of satiety-enhancing products with proven health benefits, and innovative ways to produce new foods (as structural modification) to enhance satiety/satiation may provide new opportunities. However, this potential is hindered by the cost of product testing. Within the SATIN—SATiety INnovation project—an in vitro platform has been developed to offer a cost-effective means of assessing the potential satiation/satiety effect of novel foods. This combines in vitro technologies to assess changes in colonic bacteria metabolism, appetite hormone release and the stability and bioavailability of active compounds in the new products/ingredients. This article provides a brief review of nutrients for which an impact on short-term appetite regulation has been demonstrated, and a summary of the changes to food structure which can be used to produce a change in appetite expression. Furthermore, the SATIN in vitro platform is discussed as a means of assessing the impact of nutritional and structural manipulations on appetite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009;15(13):1546–58.

    Article  CAS  PubMed  Google Scholar 

  2. Kalm LM, Semba RD. They starved so that others be better fed: remembering Ancel keys and the Minnesota experiment. J Nutr. 2005;135:1347–52.

    CAS  PubMed  Google Scholar 

  3. Stubbs J, Pallister C, Avery A, et al. Weight, body mass index and behaviour change in a commercially run lifestyle programme for young people. J Hum Nutr Diet. 2012;25(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  4. Halford JCG, Harrold JA. Satiety-enhancing products for appetite control: science and regulation of functional foods for weight management. Proc Nutr Soc. 2012;71:350–62.

    Article  PubMed  Google Scholar 

  5. Blundell J, de Graaf C, Hulshof T, et al. Appetite control: methodological aspects of the evaluation of foods. Obes Rev. 2010;11(3):251–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Van Kleef E, Van Trijp JCM, Van Den Borne JJGC, Zondervan C. Successful development of satiety enhancing food products: towards a multidisciplinary agenda of research challenges. Crit Rev Food Sci Nutr. 2012;52(7):611–28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clifton P. High protein diets and weight control. Nutr Metab Cardiovasc Dis. 2009;19(6):379–82.

    Article  CAS  PubMed  Google Scholar 

  8. Johnstone AM. Safety and efficacy of high-protein diets for weight loss. Proc Nutr Soc. 2012;71(2):339–49.

    Article  CAS  PubMed  Google Scholar 

  9. Westerterp-Plantenga MS, Rolland V, Wilson SAJ, et al. Satiety related to 24 h diet-induced thermogenesis during high protein carbohydrate vs high fat diets measured in a respiration chamber. Eur J Clin Nutr. 1999;53(6):495–502.

    Article  CAS  PubMed  Google Scholar 

  10. Skov AR, Toubro S, Ronn B, et al. Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int J Obes. 1999;23(5):528–36.

    Article  CAS  Google Scholar 

  11. Larsen TM, Dalskov S-M, van Baak M, et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010;363(22):2102–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eisenstein J, Roberts SB, Dallai G, et al. High-protein weight-loss diets: are they safe and do they work? A review of the experimental and epidemiological data. Nutr Rev. 2002;60:189–200.

    Article  PubMed  Google Scholar 

  13. Westerterp-Plantenga MS, Lejeune MP. Protein intake and body weight regulation. Appetite. 2005;45:187–90.

    Article  CAS  PubMed  Google Scholar 

  14. Pesta DH, Samuel VT. A high-protein diet for reducing body fat: mechanisms and possible caveats. Nutr Metab. 2014;11:53.

    Article  Google Scholar 

  15. Veldhorst MA, Nieuwenhuizen AG, Hochstenbach-Waelen A, et al. Dose-dependent satiating effect of whey relative to casein or soy. Physiol Behav. 2009;96(4–5):675–82.

    Article  CAS  PubMed  Google Scholar 

  16. Gilbert JA, BEnden NT, Tremblay A, et al. Effects of proteins from different sources on body composition. Nutr Metab Cardiovasc Dis. 2011;21:B16–31.

    Article  CAS  PubMed  Google Scholar 

  17. Wanders AJ, van den Born JJGC, de Graaf C, et al. Effect of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomised controlled trials. Obes Rev. 2011;12:724–39.

    CAS  PubMed  Google Scholar 

  18. Astrup A, Vrist E, Quaade F. Dietary fibre added to very low calorie diet reduced hunger and alleviates constipation. Int J Obes. 1990;14(2):105–12.

    CAS  PubMed  Google Scholar 

  19. Rigaud D, Ryttig KR, Leeds AR, et al. Effects of a moderate dietary fibre supplement on hunger rating, energy input and faecal energy output in young, healthy volunteers. A randomized, double-blind cross-over trial. Int J Obes. 1987;1:73–8.

    Google Scholar 

  20. Aston LM, Stokes CS, Jebb SA. No effect of a diet with a reduced glycemic index on satiety, energy intake and body weight in overweight and obese women. Int J Obes. 2008;32(1):160–5.

    Article  CAS  Google Scholar 

  21. Burton-Freeman B. Dietary fiber and energy regulation. J Nutr. 2000;130(2):2725–55.

    Google Scholar 

  22. Dikeman CL, Fahey GC. Viscosity as related to dietary fibre: a review. Crit Rev Food Sci Nutr. 2006;46(8):649–63.

    Article  CAS  PubMed  Google Scholar 

  23. Vuksan V, Panahi S, Lyon M, et al. Viscosity of fiber preloads affects food intake in adolescents. Nutr Metab Cardiovasc Dis. 2009;19:498–503.

    Article  CAS  PubMed  Google Scholar 

  24. Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev. 2001;59(5):129–39.

    Article  CAS  PubMed  Google Scholar 

  25. Hoad CL, Rayment P, Spiller RC, et al. In vivo imaging of intragastric gelation and its effect on satiety in humans. J Nutr. 2001;134:2293–300.

    Google Scholar 

  26. Behall KM, Scholfield DJ, Hallfrisch JG, et al. Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care. 2006;29:976–81.

    Article  CAS  PubMed  Google Scholar 

  27. Casiraghi MC, Garsetti M, Testolin G, et al. Post-prandial responses to cereal products enriched with barley beta-glucan. J Am Coll Nutr. 2006;25(4):313–20.

    Article  CAS  PubMed  Google Scholar 

  28. Raben A, Tagliabue A, Christensen NJ, et al. Resistant starch: the effect on postprandial glycemia, hormonal response and satiety. Am J Clin Nutr. 1994;60(4):544–51.

    CAS  PubMed  Google Scholar 

  29. de Roos N, Heijnen ML, de Graaf C, et al. Resistant starch has little effect on appetite, food intake and insulin secretion in healthy young men. Eur J Clin Nutr. 1995;49(7):532–41.

    PubMed  Google Scholar 

  30. Nilsson AC, Ostman EM, Holst JJ, et al. Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast. J Nutr. 2008;138:732–9.

    CAS  PubMed  Google Scholar 

  31. Rolls BJ. The relationship between dietary energy density and energy intake. Physiol Behav. 2009;97(4):609–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Di Meglio D, Matts RD. Liquid versus solid carbohydrates: effects on food intake and body weight. Int J Obes. 2000;24:794–800.

    Article  Google Scholar 

  33. Almiron-Roig E, Chen Y, Drewnowski A. No difference in satiety or in subsequent energy intakes between a beverage and a solid food. Physiol Behav. 2004;82:671–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kristensen M, Jensen MG. Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite. 2011;56:65–70.

    Article  CAS  PubMed  Google Scholar 

  35. Wolf BW, Lai CS, Kipnes MS, et al. Glycemic and insulinemic responses of non-diabetic healthy adult subjects to an experimental acid-induced viscosity complex incorporated into a glucose beverage. Nutrition. 2002;18:621–6.

    Article  CAS  PubMed  Google Scholar 

  36. Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6).

  37. Das UN. Obesity: genes, brain, gut, and environment. Nutrition. 2010;26(5):459–73.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou J, Martin RJ, Tulley RT, et al. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab. 2008;295(5):E1160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Possemiers S, Grootaert C, Vermeiren J, et al. The intestinal environment in health and disease—recent insights on the potential of intestinal bacteria to influence human health. Curr Pharm Des. 2009;15(18):2051–65.

    Article  CAS  PubMed  Google Scholar 

  41. de Wiele TV, Boon N, Possemiers S, et al. Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol. 2004;51(1):143–53.

    Article  PubMed  Google Scholar 

  42. Terpend K, Possemiers S, Daguet D, et al. Arabinogalactan and fructo-oligosaccharides have a different fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Environ Microbiol Rep. 2013;5(4):595–603.

    Article  CAS  PubMed  Google Scholar 

  43. Marzorati M, Possemiers S, Verhelst A, et al. A novel hypromellose capsule, with acid resistance properties, permits the targeted delivery of acid-sensitive products to the intestine. LWT Food Sci Technol. 2015;60(1):544–51.

    Article  CAS  Google Scholar 

  44. Sanchez JI, Marzorati M, Grootaert C, et al. Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the Simulator of Human Intestinal Microbial Ecosystem. Microb Biotechnol. 2009;2(1):101–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van den Abbeele P, Roos S, Eeckhaut V, et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol. 2012;5(1):106–15. This study provides a thorough description of the maximum degree of complexity a gut simulator can reach with the incorporation of a luminal and mucosal compartment in each colon sector.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Janssen S, Depoortere I. Nutrient sensing in the gut: new roads to therapeutics? Trends Endocrinol Metab. 2013;24(2):92–100.

    Article  CAS  PubMed  Google Scholar 

  47. Kokrashvili Z, Yee KK, Ilegems E, et al. Endocrine taste cells. Br J Nutr. 2014;111:S23–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Neary MT, Batterham RL. Gut hormones: implications for the treatment of obesity. Pharmacol Ther. 2009;124(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  49. Nguyen CA, Akiba Y, Kaunitz JD. Recent advances in gut nutrient chemosensing. Curr Med Chem. 2012;19(1):28–34.

    Article  CAS  PubMed  Google Scholar 

  50. Le Neve B, Daniel H. Selected tetrapeptides lead to a GLP-1 release from the human enteroendocrine cell line NCI-H716. Regul Pept. 2011;167(1):14–20. This study demonstrates the potential to use the human NCI-H716 cells as a valid in vitro model to study the induction of GLP-1 secretion upon the application of different stimuli.

    Article  PubMed  Google Scholar 

  51. Kim K, Lee YM, Rhyu M-R, et al. Spergularia marina induces glucagon-like peptide-1 secretion in NCI-H716 cells through bile acid receptor activation. J Med Food. 2014;17(11):1197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hira T, Maekawa T, Asano K, et al. Cholecystokinin secretion induced by beta-conglycinin peptone depends on G alpha q-mediated pathways in enteroendocrine cells. Eur J Nutr. 2009;48(2):124–7.

    Article  CAS  PubMed  Google Scholar 

  53. O'Sullivan L, Ryan L, Aherne SA, et al. Cellular transport of lutein is greater from uncooked rather than cooked spinach irrespective of whether it is fresh, frozen, or canned. Nutr Res. 2008;28(8):532–8.

    Article  PubMed  Google Scholar 

  54. Laparra JM, Glahn RP, Miller DD. Assessing potential effects of inulin and probiotic bacteria on Fe availability from common beans (Phaseolus vulgaris L.) to Caco-2 cells. J Food Sci. 2009;74(2):H40–6.

    Article  CAS  PubMed  Google Scholar 

  55. Loennerdal B. Soybean ferritin: implications for iron status of vegetarians. Am J Clin Nutr. 2009;89(5):S1680–5.

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 289800 www.satin-satiety.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne A. Harrold.

Ethics declarations

Conflict of Interest

Rubén López-Nicolás, Massimo Marzorati, Lia Scarabottolo, Carmen Frontela-Saseta, Angel M. Sanmartín and Gaspar Ros-Berruezo, declare that they have no conflict of interest.

Jason C.G. Halford has received research grants from the American Beverage Association and Bristol Meyers Squib, part-funding for a PhD studentship from Tate-and-Lyle, Weight Watchers, Coca-cola and Unilever and is an Advisory Board Member for Novo Nordisk. In addition, Jason Halford has a patent issued.

Alexandra Johnstone has received research grants from and has acted as a consultant for Marks and Spencers plc.

Joanne A Harrold has received research grants from the American Beverage Association and Bristol Meyers Squib and part-funding for a PhD studentship from Tate-and-Lyle and Coca-cola. In addition, Joanne Harrold has a patent issued.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Psychological Issues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Nicolás, R., Marzorati, M., Scarabottolo, L. et al. Satiety Innovations: Food Products to Assist Consumers with Weight Loss, Evidence on the Role of Satiety in Healthy Eating: Overview and In Vitro Approximation. Curr Obes Rep 5, 97–105 (2016). https://doi.org/10.1007/s13679-016-0196-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-016-0196-9

Keywords

Navigation