Skip to main content
Log in

Age-related Changes in Bilateral Upper Extremity Coordination

  • Physical Therapy and Rehabilitation (O Addison, Section Editor)
  • Published:
Current Geriatrics Reports Aims and scope Submit manuscript

Abstract

Although evidence exists that changes in sensorimotor function occur with aging, changes in the bilateral coordination of the upper extremities are less understood. Here, we review the behavioral and neural evidence of declines in bilateral coordination as well as the implications these deficits have on function and physical rehabilitation. We begin with an introduction to the two major forms of bilateral coordination, symmetric and non-symmetric, and their sub-groupings. After discussing the motor performance changes with age in symmetric tasks, we address age-related changes in motor lateralization that may affect the bilateral coordination of non-symmetric coordination. This is followed by a discussion of the contributions of cognitive, sensory, and cortical changes with age that influence and underlie bilateral motor performance. Finally, age-related changes in motor learning of bilateral movements are also considered. In general, most age-related changes are found in complex symmetric movements but, surprisingly, there is a dearth of information about changes in the more challenging and ubiquitous non-symmetric bilateral movements. Future investigations should focus on broadening the understanding of age-related changes in complex, functionally relevant bilateral movements, such that the real-world implications of these changes may be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ostwald SK, Snowdon DA, Rysavy SDM, Keenan NL, Kane RL. Manual dexterity as a correlate of dependency in the elderly. J Am Geriatr Soc. 1989;37(10):963–9.

    Article  CAS  PubMed  Google Scholar 

  2. Gale CR, Martyn CN, Cooper C, Sayer AA. Grip strength, body composition, and mortality. Int J Epidemiol. 2007;36(1):228–35.

    Article  PubMed  Google Scholar 

  3. Bailey RR, Klaesner JW, Lang CE. Quantifying real-world upper-limb activity in nondisabled adults and adults with chronic stroke. Neurorehabil Neural Repair. 2015;29(10):969–78. Demonstrated that older adults rely primarily on bilateral movements thoughout the day.

  4. Kilbreath SL, Heard RC. Frequency of hand use in healthy older persons. Aust J Physiother. 2005;51(2):119–22.

    Article  PubMed  Google Scholar 

  5. Hortobagyi T, Mizelle C, Beam S, DeVita P. Old adults perform activities of daily living near their maximal capabilities. J Gerontol Ser A Biol Sci Med Sci. 2003;58(5):M453–60.

    Article  Google Scholar 

  6. Seidler RD, Stelmach GE. Reduction in sensorimotor control with age. Quest. 1995;47(3):386–94.

    Article  Google Scholar 

  7. Onder G, Penninx BWJH, Ferrucci L, Fried LP, Guralnik JM, Pahor M. Measures of physical performance and risk for progressive and catastrophic disability: results from the Women’s Health and Aging Study. J Gerontol A Biol Sci Med Sci. 2005;60(1):74–9.

    Article  PubMed  Google Scholar 

  8. Verheij S, Muilwijk D, Pel JJM, van der Cammen TJM, Mattace-Raso FUS, van der Steen J. Visuomotor impairment in early-stage Alzheimer’s disease: changes in relative timing of eye and hand movements. J Alzheimers Dis. 2012;30(1):131–43.

    PubMed  Google Scholar 

  9. Scherder E, Dekker W, Eggermont L. Higher-level hand motor function in aging and (preclinical) dementia: its relationship with (instrumental) activities of daily life—a mini review. Gerontology. 2008;54(6):333–41.

    Article  PubMed  Google Scholar 

  10. Kluger A, Gianutsos JG, Golomb J, Ferris SH, George AE, Franssen E, et al. Patterns of motor impairment in normal aging, mild cognitive decline, and early Alzheimer’ disease. J Gerontol Ser B Psychol Sci Soc Sci. 1997;52B(1):P28–39.

    Article  CAS  Google Scholar 

  11. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev. 2010;34(5):721–33.

    Article  CAS  PubMed  Google Scholar 

  12. Sorond FA, Cruz-Almeida Y, Clark DJ, Viswanathan A, Scherzer CR, De Jager P, et al. Aging, the Central Nervous System, and Mobility in Older Adults: Neural Mechanisms of Mobility Impairment. J Gerontol A Biol Sci Med Sci. 2015;70(12):1526–32.

    Article  PubMed  Google Scholar 

  13. Bayram MB, Siemionow V, Yue GH. Weakening of corticomuscular signal coupling during voluntary motor action in aging. J Gerontol A Biol Sci Med Sci. 2015;70(8):1037–43.

    Article  PubMed  Google Scholar 

  14. Winstein C, Wing AM, Whitall J. Motor control and learning principles for rehabilitation of upper limb movements after brain injury. In: Grafman J, Robertsom LH, editors. Handbook of Neuropsychology. 2nd ed. 2003. p. 77–137.

    Google Scholar 

  15. Hoyer EH, Bastian AJ. The effects of task demands on bimanual skill acquisition. Exp Brain Res. 2013;226(2):193–208.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kelso JAS. Phase transitions and critical behavior in human bimanual coordination. Am J Physiol - Regul Integr Comp Physiol. 1984;246(6):R1000–4.

  17. Kelso JAS. Dynamic patterns: the self-organization of brain and behavior. Cambridge: MIT Press; 1995.

    Google Scholar 

  18. Swinnen SP. Intermanual coordination: from behavioral principles to neural-network interactions. Nat Rev Neurosci. 2002;3(5):348–59.

    Article  PubMed  Google Scholar 

  19. Schoner G, Haken H, Kelso JAS. A stochastic theory of phase transitions in human hand movement. Biol Cybern. 1986;53(4):247–57.

    Article  CAS  PubMed  Google Scholar 

  20. Stelmach GE, Amrhein PC, Goggin NL. Age differences in bimanual coordination. J Gerontol. 1988;43(1):P18–23.

    Article  CAS  PubMed  Google Scholar 

  21. Wishart LR, Lee TD, Murdoch JE, Hodges NJ. Effects of aging on automatic and effortful processes in bimanual coordination. J Gerontol Ser B Psychol Sci Soc Sci. 2000;55(2):P85–94.

    Article  CAS  Google Scholar 

  22. Lin C-H, Chou L-W, Wei S-H, Lieu F-K, Chiang S-L, Sung W-H. Influence of aging on bimanual coordination control. Exp Gerontol. 2014;53:40–7.

    Article  PubMed  Google Scholar 

  23. Summers JJ, Lewis J, Fujiyama H. Aging effects on event and emergent timing in bimanual coordination. Hum Mov Sci. 2010;29(5):820–30.

    Article  PubMed  Google Scholar 

  24. Temprado J-J, Vercruysse S, Salesse R, Berton E. A dynamic systems approach to the effects of aging on bimanual coordination. Gerontology. 2010;56(3):335–44.

    Article  PubMed  Google Scholar 

  25. Mechsner F, Kerzel D, Knoblich G, Prinz W. Perceptual basis of bimanual coordination. Nature. 2001;414(6859):69–73.

    Article  CAS  PubMed  Google Scholar 

  26. White O, Diedrichsen J. Responsibility assignment in redundant systems. Curr Biol. 2010;20(14):1290–5.

    Article  CAS  PubMed  Google Scholar 

  27. Woodworth RS. Accuracy of voluntary movement. Psychol Rev. 1899;3:1–114.

    Google Scholar 

  28. Elliott D, Roy EA. Manual Asymmetries in Motor Performance. Boca Raton: CRC Press; 1996.

  29. McManus IC. Right- and left-hand skill: failure of the right shift model. Br J Psychol. 1985;76(Pt 1):1–34.

    Article  PubMed  Google Scholar 

  30. Sainburg RL, Kalakanis D. Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol. 2000;83(5):2661–75.

    CAS  PubMed  Google Scholar 

  31. Peters M. Why the preferred hand taps more quickly than the non-preferred hand: three experiments on handedness. Can J Psychol Can Psychol. 1980;34(1):62–71.

    Article  Google Scholar 

  32. Todor JI, Cisneros J. Accommodation to increased accuracy demands by the right and left hands. J Mot Behav. 1985;17(3):355–72.

    Article  CAS  PubMed  Google Scholar 

  33. Carson RG, Chua R, Elliott D, Goodman D. The contribution of vision to asymmetries in manual aiming. Neuropsychologia. 1990;28(11):1215–20.

    Article  CAS  PubMed  Google Scholar 

  34. Sainburg RL. Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev. 2005;33(4):206–13.

    Article  PubMed  Google Scholar 

  35. Mutha PK, Haaland KY, Sainburg RL. Rethinking motor lateralization: specialized but complementary mechanisms for motor control of each arm. PLoS One. 2013;8(3):e58582. Suggests that the view of motor lateralization has shifted from the dominant left hemisphere specialization of motor function to the theory that the left and right hemisphere are specialized for different aspects of motor control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guiard Y. Asymmetric division of labor in human skilled bimanual action. J Mot Behav. 1987;19(4):486–517.

  37. Peters M. Does handedness play a role in the coordination of bimanual movement? In: Swinnen SP, Heuer H, Massion J, editors. Interlimb coordination: neural, dynamical, and cognitive constraints. 1st ed. San Diego: Academic Press; 1994.

  38. Kourtis D, De Saedeleer L, Vingerhoets G. Handedness consistency influences bimanual coordination: a behavioural and electrophysiological investigation. Neuropsychologia. 2014;58:81–7.

    Article  PubMed  Google Scholar 

  39. Dounskaia N, Nogueira KG, Swinnen SP, Drummond E. Limitations on coupling of bimanual movements caused by arm dominance: when the muscle homology principle fails. J Neurophysiol. 2010;103(4):2027–38.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kalisch T, Wilimzig C, Kleibel N, Tegenthoff M, Dinse HR. Age-related attenuation of dominant hand superiority. PLoS One. 2006;1(1):e90.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Paizis C, Skoura X, Personnier P, Papaxanthis C. Motor asymmetry attenuation in older adults during imagined arm movements. Front Aging Neurosci. 2014;6:49.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Przybyla A, Haaland KY, Bagesteiro LB, Sainburg RL. Motor asymmetry reduction in older adults. Neurosci Lett. 2011;489(2):99–104.

    Article  CAS  PubMed  Google Scholar 

  43. Chua R, Pollock BJ, Elliott D, Swanson LR, Carnahan H. The influence of age on manual asymmetries in movement preparation and execution. Dev Neuropsychol. 1995;11(1):129–37.

    Article  Google Scholar 

  44. Rosenbaum DA. Human movement initiation: specification of arm, direction, and extent. J Exp Psychol Gen. 1980;109(4):444–74.

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Przybyla A, Wuebbenhorst K, Haaland KY, Sainburg RL. Aging reduces asymmetries in interlimb transfer of visuomotor adaptation. Exp Brain Res. 2011;210(2):283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pan Z, Van Gemmert AWA. The effects of aging on the asymmetry of inter-limb transfer in a visuomotor task. Exp Brain Res. 2013;229(4):621–33.

    Article  PubMed  Google Scholar 

  47. Koppelmans V, Hirsiger S, Mérillat S, Jäncke L, Seidler RD. Cerebellar gray and white matter volume and their relation with age and manual motor performance in healthy older adults. Hum Brain Mapp. 2015;36(6):2352–63.

    Article  PubMed  Google Scholar 

  48. Bangert AS, Reuter-Lorenz PA, Walsh CM, Schachter AB, Seidler RD. Bimanual coordination and aging: neurobehavioral implications. Neuropsychologia. 2010;48(4):1165–70.

    Article  PubMed  Google Scholar 

  49. Swinnen SP, Wenderoth N. Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn Sci. 2004;8(1):18–25.

    Article  PubMed  Google Scholar 

  50. Hu X, Newell KM. Aging, visual information, and adaptation to task asymmetry in bimanual force coordination. J Appl Physiol. 2011;111(6):1671–80.

    Article  PubMed  Google Scholar 

  51. Boisgontier M, Van Halewyck F, Corporaal S, Willacker L, van den Bergh V, Beets I, et al. Vision of the active limb impairs bimanual motor tracking in young and older adults. Front Aging Neurosci. 2014;6:320.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Boisgontier MP, Swinnen SP. Age-related deficit in a bimanual joint position matching task is amplitude dependent. Front Aging Neurosci. 2015;7:162.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Blais M, Martin E, Albaret J-M, Tallet J. Preservation of perceptual integration improves temporal stability of bimanual coordination in the elderly: an evidence of age-related brain plasticity. Behav Brain Res. 2014;275:34–42.

    Article  PubMed  Google Scholar 

  54. Capaday C. The integrated nature of motor cortical function. Neuroscientist. 2004;10(3):207–20.

    Article  PubMed  Google Scholar 

  55. Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, et al. Neurophysiological correlates of age-related changes in human motor function. Neurology. 2002;58(4):630–5.

    Article  CAS  PubMed  Google Scholar 

  56. Heuninckx S, Wenderoth N, Debaere F, Peeters R, Swinnen SP. Neural basis of aging: the penetration of cognition into action control. J Neurosci. 2005;25(29):6787–96.

    Article  CAS  PubMed  Google Scholar 

  57. Goble DJ, Coxon JP, Van Impe A, De Vos J, Wenderoth N, Swinnen SP. The neural control of bimanual movements in the elderly: brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment. Hum Brain Mapp. 2010;31(8):1281–95.

    PubMed  Google Scholar 

  58. Ward NS. Compensatory mechanisms in the aging motor system. Ageing Res Rev. 2006;5(3):239–54.

    Article  PubMed  Google Scholar 

  59. Heitger MH, Goble DJ, Dhollander T, Dupont P, Caeyenberghs K, Leemans A, et al. Bimanual motor coordination in older adults is associated with increased functional brain connectivity—a graph-theoretical analysis. PLoS One. 2013;8(4):e62133. Suggests that the altered interhemispheric interactions that are generally observed with aging such that young adults utilize inter-hemispheric inhibitory connections (IHI), while older adults utilize inter-hemispheric facilitation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rémy F, Wenderoth N, Lipkens K, Swinnen SP. Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: an fMRI study. Cortex. 2008;44(5):482–93.

    Article  PubMed  Google Scholar 

  61. Zaidel E, Iacoboni M. The parallel brain: the cognitive neuroscience of the corpus callosum. Cambridge: MIT Press; 2003.

  62. Fling BW, Walsh CM, Bangert AS, Reuter-Lorenz PA, Welsh RC, Seidler RD. Differential callosal contributions to bimanual control in young and older adults. J Cogn Neurosci. 2011;23(9):2171–85.

    Article  PubMed  Google Scholar 

  63. Fling BW, Seidler RD. Fundamental differences in callosal structure, neurophysiologic function, and bimanual control in young and older adults. Cereb Cortex. 2012;22(11):2643–52.

    Article  CAS  PubMed  Google Scholar 

  64. Fujiyama H, Van Soom J, Rens G, Gooijers J, Leunissen I, Levin O, et al. Age-related changes in frontal network structural and functional connectivity in relation to bimanual movement control. J Neurosci. 2016;36(6):1808–22. Demonstrates that age-related declines in bilateral coordination are likely modulated by a combination of structural (WM integrity) and functional (interhemispheric connectivity) cortical changes.

    Article  PubMed  Google Scholar 

  65. Maki Y, Wong KFK, Sugiura M, Ozaki T, Sadato N. Asymmetric control mechanisms of bimanual coordination: an application of directed connectivity analysis to kinematic and functional MRI data. Neuroimage. 2008;42(4):1295–304.

    Article  PubMed  Google Scholar 

  66. Serbruyns L, Gooijers J, Caeyenberghs K, Meesen RL, Cuypers K, Sisti HM, et al. Bimanual motor deficits in older adults predicted by diffusion tensor imaging metrics of corpus callosum subregions. Brain Struct Funct. 2015;220(1):273–90.

    Article  CAS  PubMed  Google Scholar 

  67. Sisti HM, Geurts M, Clerckx R, Gooijers J, Coxon JP, Heitger MH, et al. Testing multiple coordination constraints with a novel bimanual visuomotor task. PLoS One. 2011;6(8):e23619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Solesio-Jofre E, Serbruyns L, Woolley DG, Mantini D, Beets IAM, Swinnen SP. Aging effects on the resting state motor network and interlimb coordination. Hum Brain Mapp. 2014;35(8):3945–61.

    Article  PubMed  Google Scholar 

  69. Kiyama S, Kunimi M, Iidaka T, Nakai T. Distant functional connectivity for bimanual finger coordination declines with aging: an fMRI and SEM exploration. Front Hum Neurosci. 2014;8:251.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fujiyama H, Van Soom J, Rens G, Cuypers K, Heise K-F, Levin O, et al. Performing two different actions simultaneously: the critical role of interhemispheric interactions during the preparation of bimanual movement. Cortex. 2016;77:141–54.

    Article  PubMed  Google Scholar 

  71. Cauraugh JH, Summers JJ. Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Prog Neurobiol. 2005;75(5):309–20.

    Article  PubMed  Google Scholar 

  72. McCombe Waller S, Whitall J. Bilateral arm training: why and who benefits? NeuroRehabilitation. 2008;23(1):29–41.

    PubMed  Google Scholar 

  73. Sainburg R, Good D, Przybyla A. Bilateral synergy: a framework for post-stroke rehabilitation. J Neurol Transl Neurosci. 2013;1(3):1025.

  74. Whitall J, Waller SM, Silver KHC, Macko RF. Repetitive bilateral Arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke. 2000;31(10):2390–5.

    Article  CAS  PubMed  Google Scholar 

  75. Voelcker-Rehage C. Motor-skill learning in older adults—a review of studies on age-related differences. Eur Rev Aging Phys Act. 2008;5(1):5–16.

    Article  Google Scholar 

  76. Bhakuni R, Mutha PK. Learning of bimanual motor sequences in normal aging. Front Aging Neurosci. 2015;7:76.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hoff M, Trapp S, Kaminski E, Sehm B, Steele CJ, Villringer A, et al. Switching between hands in a serial reaction time task: a comparison between young and old adults. Front Aging Neurosci. 2015;7:176.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Verneau M, van der Kamp J, Savelsbergh GJP, de Looze MP. Age and time effects on implicit and explicit learning. Exp Aging Res. 2014;40(4):477–511.

    Article  PubMed  Google Scholar 

  79. Pauwels L, Swinnen SP, Beets IAM. Contextual interference in complex bimanual skill learning leads to better skill persistence. PLoS One. 2014;9(6):e100906.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pauwels L, Vancleef K, Swinnen SP, Beets IAM. Challenge to promote change: both young and older adults benefit from contextual interference. Front Aging Neurosci. 2015;7:157.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hinder MR, Carroll TJ, Summers JJ. Transfer of ballistic motor skill between bilateral and unilateral contexts in young and older adults: neural adaptations and behavioral implications. J Neurophysiol. 2013;109(12):2963–71.

    Article  PubMed  Google Scholar 

  82. Vieluf S, Godde B, Reuter E-M, Temprado J-J, Voelcker-Rehage C. Practice effects in bimanual force control: does age matter? J Mot Behav. 2015;47(1):57–72.

    Article  PubMed  Google Scholar 

  83. Swinnen SP. Age-related deficits in motor learning and differences in feedback processing during the production of a bimanual coordination pattern. Cogn Neuropsychol. 1998;15(5):439–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly P. Westlake.

Ethics declarations

Conflict of Interest

As an inventor of a bilateral arm training technology, Jill Whitall anticipates the possibility of receiving income in the future from her institution (UMB) under its Intellectual Property Policy.

Elizabeth Woytowicz and Kelly Westlake declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Physical Therapy and Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woytowicz, E., Whitall, J. & Westlake, K.P. Age-related Changes in Bilateral Upper Extremity Coordination. Curr Geri Rep 5, 191–199 (2016). https://doi.org/10.1007/s13670-016-0184-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13670-016-0184-7

Keywords

Navigation