Skip to main content
Log in

Aging reduces asymmetries in interlimb transfer of visuomotor adaptation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Hemispheric asymmetry reduction in older adults (HAROLD) has been reported in previous imaging studies that employed not only cognitive, but also motor tasks. However, whether age-related reductions in asymmetry of hemispheric activations affect the symmetry of motor behavior in older adults remains largely untested. We now examine the effect of aging on lateralization of motor adaptation and transfer by investigating adaptation to novel visuomotor transformations in both old and young age groups. We have previously reported substantial asymmetries in interlimb transfer of learning these transformations in young adults, and attributed these asymmetries in transfer to hemispheric lateralization for motor control, as detailed by our dynamic dominance hypothesis. Based on the HAROLD model, we reasoned that older adults should recruit more symmetrical hemispheric activity, and thus show more symmetrical transfer of adaptation across the arms. Half of the subjects in each age group first adapted to a rotated visual display with the left arm, then with the right arm; and the other half in the reversed order. Naïve performance with one arm and the same-arm performance following opposite arm adaptation were compared to determine the extent of transfer in each age group. Our results showed that interlimb transfer of initial direction information only occurred from the nondominant to dominant arm in young adults, whereas it occurred in both directions in older adults. Our findings clearly indicate substantially reduced asymmetry in visuomotor adaptation in older adults, and suggest that this reduced motor asymmetry might be related to diminished hemispheric lateralization for motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anguera JA, Reuter-Lorenz PA, Willingham DT, Seidler RD (2011) Failure to engage spatial working memory contributes to age-related declines in visuomotor learning. J Cogn Neurosci 23:11–25

    Article  PubMed  Google Scholar 

  • Bergerbest D, Gabrieli JD, Whitfield-Gabrieli S, Kim H, Stebbins GT, Bennett DA, Fleischman DA (2009) Age-associated reduction of asymmetry in prefrontal function and preservation of conceptual repetition priming. Neuroimage 45:237–246

    Article  PubMed  CAS  Google Scholar 

  • Brown HD, Kosslyn SM (1993) Cerebral lateralization. Curr Opin Neurobiol 3:183–186

    Article  PubMed  CAS  Google Scholar 

  • Buch ER, Young S, Contreras-Vidal JL (2003) Visuomotor adaptation in normal aging. Learn Mem 10:55–63

    Article  PubMed  Google Scholar 

  • Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100

    Article  PubMed  Google Scholar 

  • Cabeza R, Anderson ND, Locantore JK, McIntosh AR (2002) Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17:1394–1402

    Article  PubMed  Google Scholar 

  • Cabeza R, Daselaar SM, Dolcos F, Prince SE, Budde M, Nyberg L (2004) Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb Cortex 14:364–375

    Article  PubMed  Google Scholar 

  • Cerella J (1990) Aging and information-processing rate. In: Birren JE, Schaie KW (eds) Handbook of the psychology of aging, 3rd edn. Academic Press, New York, pp 201–221

    Google Scholar 

  • Corballis MC (1991) Left brain, right brain. Science 251:575–576

    Article  PubMed  CAS  Google Scholar 

  • Dassonville P, Zhu XH, Uurbil K, Kim SG, Ashe J (1997) Functional activation in motor cortex reflects the direction and the degree of handedness. Proc Natl Acad Sci USA 94:14015–14018

    Article  PubMed  CAS  Google Scholar 

  • Dolcos F, Rice HJ, Cabeza R (2002) Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neurosci Biobehav Rev 26:819–825

    Article  PubMed  Google Scholar 

  • Evans WJ (2010) Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr 91:1123S–1127S

    Article  PubMed  CAS  Google Scholar 

  • Fjell AM, Walhovd KB (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21:187–221

    Article  PubMed  Google Scholar 

  • Goodale MA (1990) Brain asymmetries in the control of reaching. In: Goodale MA (ed) Vision and action: the control of grasping. Ablex, Norwood, pp 14–32

    Google Scholar 

  • Grabiner MD, Enoka RM (1995) Changes in movement capabilities with aging. Exerc Sport Sci Rev 23:65–104

    Article  PubMed  CAS  Google Scholar 

  • Grady CL (2000) Functional brain imaging and age-related changes in cognition. Biol Psychol 54:259–281

    Article  PubMed  CAS  Google Scholar 

  • Grady CL, Mcintosh AR, Horwitz B, Maisog JM, Ungerleider LG, Mentis MJ, Pietrini P, Schapiro MB, Haxby JV (1995) Age-related reductions in human recognition memory due to impaired encoding. Science 269:218–221

    Article  PubMed  CAS  Google Scholar 

  • Green JJ (1986) Characteristics of aging human skeletal muscles. In: Sutton JR, Brock RM (eds) Sports medicine for the mature athlete. Benchmark Press, Indianapolis, pp 17–26

    Google Scholar 

  • Heuer H, Hegele M (2008) Adaptation to visuomotor rotations in younger and older adults. Psychol Aging 23:190–202

    Article  PubMed  Google Scholar 

  • Kenshalo DR (1977) Age changes in touch, vibration, temperature, kinesthesis, and pain sensitivity. In: Birren JE, Schaie KW (eds) Handbook of the psychology of aging. Van Nostrand Reinhold, New York, pp 562–579

    Google Scholar 

  • Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K, Georgopoulos AP (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  PubMed  CAS  Google Scholar 

  • Kutas M, Donchin E (1974) Studies of squeezing: handedness, responding hand, response force, and asymmetry of readiness potential. Science 186:545–548

    Article  PubMed  CAS  Google Scholar 

  • Mattay VS, Fera F, Tessitore A, Hariri AR, Das S, Callicott JH, Weinberger DR (2002) Neurophysiological correlates of age-related changes in human motor function. Neurology 58:630–635

    PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Przybyla A, Sainburg RL (2010) Non-dominant advantages for movement accuracy depend on task conditions. Program no. 293.11, Neuroscience meeting planner. Society for Neuroscience, San Diego, CA. Online

  • Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, Marshuetz C, Koeppe RA (2000) Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci 12:174–187

    Article  PubMed  CAS  Google Scholar 

  • Rowe JB, Siebner H, Filipovic SR, Cordivari C, Gerschlager W, Rothwell J, Frackowiak R (2006) Aging is associated with contrasting changes in local and distant cortical connectivity in the human motor system. Neuroimage 32:747–760

    Article  PubMed  Google Scholar 

  • Rypma B, Prabhakaran V, Desmond JE, Gabrieli JD (2001) Age differences in prefrontal cortical activity in working memory. Psychol Aging 16:371–384

    Article  PubMed  CAS  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic dominance hypothesis of handedness. Exp Brain Res 142:241–258

    Article  PubMed  Google Scholar 

  • Sainburg RL (2005) Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213

    Article  PubMed  Google Scholar 

  • Sainburg RL, Wang J (2002) Interlimb transfer of visuomotor rotations: independence of direct and final end position information. Exp Brain Res 145:437–447

    Article  PubMed  Google Scholar 

  • Schaefer SY, Haaland KY, Sainburg RL (2007) Ipsilesional motor deficits following stroke reflect hemispheric specializations for movement control. Brain 130:2146–2158

    Article  PubMed  Google Scholar 

  • Schaefer SY, Haaland KY, and Sainburg RL (2009) Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy. Neuropsychologia 47:2953–2966. Erratum in: Neuropsychologia (2010) 48:1178–1180

    Google Scholar 

  • Serrien DA, Ivry RB, Swinnen SP (2006) Dynamics of interhemispheric specialization and integration in the context of motor control. Nat Rev Neurosci 7:160–167

    Article  PubMed  CAS  Google Scholar 

  • Tanji J, Okano K, Sato KC (1988) Neuronal activity in cortical motor areas related to ipsilateral, contralateral, and bilateral digit movements of the monkey. J Neurophysiol 60:325–343

    PubMed  CAS  Google Scholar 

  • Urbano A, Babiloni C, Onorati P, Babiloni F (1996) Human cortical activity related to unilateral movements. A high resolution EEG study. Neuroreport 8:203–206

    Article  PubMed  CAS  Google Scholar 

  • Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79:2149–2154

    PubMed  CAS  Google Scholar 

  • Wang J (2008) A dissociation between visual and motor workspace inhibits generalization of visuomotor adaptation across the limbs. Exp Brain Res 187:483–490

    Article  PubMed  Google Scholar 

  • Wang J, Sainburg RL (2006a) Interlimb transfer of visuomotor rotations depends on handedness. Exp Brain Res 175:223–230

    Article  PubMed  Google Scholar 

  • Wang J, Sainburg RL (2006b) The symmetry of interlimb transfer depends on workspace location. Exp Brain Res 170:464–471

    Article  PubMed  Google Scholar 

  • Wang J, Sainburg RL (2007) The dominant and non-dominant arms are specialized for stabilizing different features of task performance. Exp Brain Res 178:565–570

    Article  PubMed  Google Scholar 

  • Wang J, Sainburg RL (2009) Generalization of visuomotor learning between bilateral and unilateral conditions. J Neurophysiol 102:2790–2799

    Article  PubMed  Google Scholar 

  • Ward NS, Frackowiak RS (2003) Age-related changes in the neural correlates of motor performance. Brain 126:873–888

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health, National Institute for Child Health and Human Development RO1HD39311 and 1R01HD059783 to RS, K01HD050245 to JW; and Career Scientist Award from the Department of Veterans Affairs to KYH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsung Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Przybyla, A., Wuebbenhorst, K. et al. Aging reduces asymmetries in interlimb transfer of visuomotor adaptation. Exp Brain Res 210, 283–290 (2011). https://doi.org/10.1007/s00221-011-2631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2631-1

Keywords

Navigation