Skip to main content

Advertisement

Log in

Leveraging the Food Environment in Obesity Prevention: the Promise of Systems Science and Agent-Based Modeling

  • Diabetes and Obesity (MC de Oliveira Otto, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Understanding (and reshaping) the neighborhood food environment has emerged as an important pathway to change diet and reduce obesity risk. Dietary behaviors and the development of obesity are complex processes which feature interactions among multiple biological, behavioral, environmental, and cultural factors. Systems science, especially agent-based modeling, offers an effective approach to help identify the best strategies to leverage the food environment in ways that can improve dietary behaviors and prevent obesity. With support from existing literature, this study presents a conceptual framework that describes the pathways through which food environment influences dietary behaviors and obesity. The paper articulates the rationale for using systems science to understand the dynamics and interactions of food environment, dietary behaviors, and obesity. Two specific agent-based models depicting the food environment are presented to demonstrate the promise of systems science to inform the design and implementation of public health interventions and policies for improving dietary behaviors and preventing obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wilson PWF, D’Agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162(16):1867–72.

    Article  PubMed  Google Scholar 

  2. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief. 2015;219(219):1–8.

    Google Scholar 

  3. Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491–7.

    Article  PubMed  Google Scholar 

  4. Collaboration NRF et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387(10026):1377–96. This study demonstrates the importance of curbing obesity epidemics around the globe.

    Article  Google Scholar 

  5. Wang Y, Beydoun MA. The obesity epidemic in the United States—gender, age, socioeconomic, racial/ethnic, and geographic characteristics: a systematic review and meta-regression analysis. Epidemiol Rev. 2007;29(1):6–28.

    Article  CAS  PubMed  Google Scholar 

  6. Black JL, Macinko J. The changing distribution and determinants of obesity in the neighborhoods of New York City, 2003–2007. Am J Epidemiol. 2010;171(7):765–75.

    Article  PubMed  Google Scholar 

  7. Kilmer G, Roberts H, Hughes E, Li Y, Valluru B, Fan A, et al. Surveillance of certain health behaviors and conditions among states and selected local areas—Behavioral Risk Factor Surveillance System (BRFSS), United States, 2006. MMWR Surveill Summ. 2008;57(7):1–188.

    PubMed  Google Scholar 

  8. Swinburn BA, Caterson I, Seidell JC, James WPT. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr. 2004;7(1a):123–46.

    CAS  PubMed  Google Scholar 

  9. Joshipura KJ, Ascherio A, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282(13):1233–9.

    Article  CAS  PubMed  Google Scholar 

  10. Joshipura KJ, Hu FB, Manson JE, Stampfer MJ, Rimm EB, Speizer FE, et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med. 2001;134(12):1106–14.

    Article  CAS  PubMed  Google Scholar 

  11. Brand-Miller J, Hayne S, Petocz P, Colagiuri S. Low–glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care. 2003;26(8):2261–7.

    Article  PubMed  Google Scholar 

  12. Jeffery RW, Baxter J, McGuire M, Linde J. Are fast food restaurants an environmental risk factor for obesity? Int J Behav Nutr Phys Act. 2006;3(1):1.

    Article  Google Scholar 

  13. Rosenheck R. Fast food consumption and increased caloric intake: a systematic review of a trajectory towards weight gain and obesity risk. Obes Rev. 2008;9(6):535–47.

    Article  CAS  PubMed  Google Scholar 

  14. He K, Hu FB, Colditz GA, Manson JE, Willett WC, Liu S. Changes in intake of fruits and vegetables in relation to risk of obesity and weight gain among middle-aged women. Int J Obes. 2004;28(12):1569–74.

    Article  CAS  Google Scholar 

  15. Huang TT, Drewnowski A, Kumanyika SK, Glass TA. A systems-oriented multilevel framework for addressing obesity in the 21st century. Prev Chronic Dis [Internet]. 2009 [cited 2016 Jul 13];6(3). Available from: http://pubmedcentralcanada.ca/articlerender.cgi?artid=1097798

  16. Rao M, Prasad S, Adshead F, Tissera H. The built environment and health. Lancet. 2007;370(9593):1111–3.

    Article  PubMed  Google Scholar 

  17. Rundle A, Roux AVD, Freeman LM, Miller D, Neckerman KM, Weiss CC. The urban built environment and obesity in New York City: a multilevel analysis. Am J Health Promot. 2007;21(4 suppl):326–34.

    Article  PubMed  Google Scholar 

  18. Booth KM, Pinkston MM, Poston WSC. Obesity and the built environment. J Am Diet Assoc. 2005;105(5):110–7.

    Article  Google Scholar 

  19. Papas MA, Alberg AJ, Ewing R, Helzlsouer KJ, Gary TL, Klassen AC. The built environment and obesity. Epidemiol Rev. 2007;29(1):129–43.

    Article  PubMed  Google Scholar 

  20. Odoms-Young AM, Zenk SN, Karpyn A, Ayala GX, Gittelsohn J. Obesity and the food environment among minority groups. Curr Obes Rep. 2012;1(3):141–51.

    Article  Google Scholar 

  21. Morland K, Wing S, Roux AD. The contextual effect of the local food environment on residents’ diets: the atherosclerosis risk in communities study. Am J Public Health. 2002;92(11):1761–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Larson NI, Story MT, Nelson MC. Neighborhood environments: disparities in access to healthy foods in the US. Am J Prev Med. 2009;36(1):74–81.

    Article  PubMed  Google Scholar 

  23. Lim S, Harris TG. Neighborhood contributions to racial and ethnic disparities in obesity among New York City adults. Am J Public Health. 2015;105(1):159–65. This article acknowledges the already existing racial and ethnic differences in obesity and the impact of neighborhood factors.

    Article  PubMed  Google Scholar 

  24. Lovasi GS, Neckerman KM, Quinn JW, Weiss CC, Rundle A. Effect of individual or neighborhood disadvantage on the association between neighborhood walkability and body mass index. Am J Public Health. 2009;99(2):279–84.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Morland KB, Evenson KR. Obesity prevalence and the local food environment. Health Place. 2009;15(2):491–5.

    Article  PubMed  Google Scholar 

  26. Inagami S, Cohen DA, Finch BK, Asch SM. You are where you shop: grocery store locations, weight, and neighborhoods. Am J Prev Med. 2006;31(1):10–7.

    Article  PubMed  Google Scholar 

  27. Inagami S, Cohen DA, Brown AF, Asch SM. Body mass index, neighborhood fast food and restaurant concentration, and car ownership. J Urban Health. 2009;86(5):683–95.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Holsten JE. Obesity and the community food environment: a systematic review. Public Health Nutr. 2009;12(3):397–405.

    PubMed  Google Scholar 

  29. Ford PB, Dzewaltowski DA. Disparities in obesity prevalence due to variation in the retail food environment: three testable hypotheses. Nutr Rev. 2008;66(4):216–28.

    Article  PubMed  Google Scholar 

  30. Adler NE, Stewart J. Reducing obesity: motivating action while not blaming the victim. Milbank Q. 2009;87(1):49–70.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Berg-Smith SM, Stevens VJ, Brown KM, Van Horn L, Gernhofer N, Peters E, et al. A brief motivational intervention to improve dietary adherence in adolescents. Health Educ Res. 1999;14(3):399–410.

    Article  CAS  PubMed  Google Scholar 

  32. Steeves EA, Martins PA, Gittelsohn J. Changing the food environment for obesity prevention: key gaps and future directions. Curr Obes Rep. 2014;3(4):451–8. This review identifies missing elements from the existing body of literature on food environment interventions and also emphasizes that systems science models should be utilized to promote programs or policies and to examine the potential impact prior to execution.

    Article  Google Scholar 

  33. Li Y, Lawley MA, Siscovick DS, Zhang D, Pagán JA. Agent-based modeling of chronic diseases: a narrative review and future research directions. Prev Chronic Dis [Internet]. 2016 [cited 2016 May 31];13. Available from: http://origin.glb.cdc.gov/pcd/issues/2016/15_0561.htm. This literature review discusses existing agent-based models of obesity and other chronic health conditions.

  34. Caspi CE, Sorensen G, Subramanian SV, Kawachi I. The local food environment and diet: a systematic review. Health Place. 2012;18(5):1172–87.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Glanz K. Measuring food environments: a historical perspective. Am J Prev Med. 2009;36(4, Supplement):S93–8.

    Article  PubMed  Google Scholar 

  36. Swinburn B, Egger G, Raza F. Dissecting obesogenic environments: the development and application of a framework for identifying and prioritizing environmental interventions for obesity. Prev Med. 1999;29(6 Pt 1):563–70.

    Article  CAS  PubMed  Google Scholar 

  37. Song H-J, Gittelsohn J, Kim M, Suratkar S, Sharma S, Anliker J. A corner store intervention in a low-income urban community is associated with increased availability and sales of some healthy foods. Public Health Nutr. 2009;12(11):2060–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sturm R, Cohen DA. Zoning for health? The year-old ban on new fast-food restaurants in South LA. Health Aff Proj Hope. 2009;28(6):w1088–1097.

    Article  Google Scholar 

  39. Gittelsohn J, Kim EM, He S, Pardilla M. A food store-based environmental intervention is associated with reduced BMI and improved psychosocial factors and food-related behaviors on the Navajo nation. J Nutr. 2013;143(9):1494–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cavanaugh E, Green S, Mallya G, Tierney A, Brensinger C, Glanz K. Changes in food and beverage environments after an urban corner store intervention. Prev Med. 2014;65:7–12.

    Article  PubMed  Google Scholar 

  41. Zhen C, Brissette IF, Ruff RR. By Ounce or by calorie: the differential effects of alternative sugar-sweetened beverage tax strategies. Am J Agric Econ. 2014;aau052.

  42. An R. Effectiveness of subsidies in promoting healthy food purchases and consumption: a review of field experiments. Public Health Nutr. 2013;16(7):1215–28.

    Article  PubMed  Google Scholar 

  43. Mytton OT, Clarke D, Rayner M. Taxing unhealthy food and drinks to improve health. BMJ. 2012;344:e2931.

    Article  PubMed  Google Scholar 

  44. Brownell KD, Farley T, Willett WC, Popkin BM, Chaloupka FJ, Thompson JW, et al. The public health and economic benefits of taxing sugar-sweetened beverages. N Engl J Med. 2009;361(16):1599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Powell LM, Chaloupka FJ. Food prices and obesity: evidence and policy implications for taxes and subsidies. Milbank Q. 2009;87(1):229–57.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Snyder LB, Hamilton MA, Mitchell EW, Kiwanuka-Tondo J, Fleming-Milici F, Proctor D. A meta-analysis of the effect of mediated health communication campaigns on behavior change in the United States. J Health Commun. 2004;9 Suppl 1:71–96.

    Article  PubMed  Google Scholar 

  47. Wakefield MA, Loken B, Hornik RC. Use of mass media campaigns to change health behaviour. Lancet. 2010;376(9748):1261–71.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Harris JL, Bargh JA. The relationship between television viewing and unhealthy eating: implications for children and media interventions. Health Commun. 2009;24(7):660–73.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dixon HG, Scully ML, Wakefield MA, White VM, Crawford DA. The effects of television advertisements for junk food versus nutritious food on children’s food attitudes and preferences. Soc Sci Med 1982. 2007;65(7):1311–23.

    Google Scholar 

  50. Yun D, Silk KJ. Social norms, self-identity, and attention to social comparison information in the context of exercise and healthy diet behavior. Health Commun. 2011;26(3):275–85.

    Article  PubMed  Google Scholar 

  51. Scully M, Wakefield M, Niven P, Chapman K, Crawford D, Pratt IS, et al. Association between food marketing exposure and adolescents’ food choices and eating behaviors. Appetite. 2012;58(1):1–5.

    Article  PubMed  Google Scholar 

  52. Zimmerman FJ, Shimoga SV. The effects of food advertising and cognitive load on food choices. BMC Public Health. 2014;14(1):1.

    Article  Google Scholar 

  53. Piernas C, Popkin BM. Increased portion sizes from energy-dense foods affect total energy intake at eating occasions in US children and adolescents: patterns and trends by age group and sociodemographic characteristics, 1977–2006. Am J Clin Nutr. 2011;94(5):1324–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Casagrande SS, Wang Y, Anderson C, Gary TL. Have Americans increased their fruit and vegetable intake? The trends between 1988 and 2002. Am J Prev Med. 2007;32(4):257–63.

    Article  PubMed  Google Scholar 

  55. Casagrande SS, Whitt-Glover MC, Lancaster KJ, Odoms-Young AM, Gary TL. Built environment and health behaviors among African Americans: a systematic review. Am J Prev Med. 2009;36(2):174–81.

    Article  PubMed  Google Scholar 

  56. Bodor JN, Rose D, Farley TA, Swalm C, Scott SK. Neighbourhood fruit and vegetable availability and consumption: the role of small food stores in an urban environment. Public Health Nutr. 2008;11(4):413–20.

    Article  PubMed  Google Scholar 

  57. McKinnon RA, Reedy J, Morrissette MA, Lytle LA, Yaroch AL. Measures of the food environment: a compilation of the literature, 1990–2007. Am J Prev Med. 2009;36(4):S124–33.

    Article  PubMed  Google Scholar 

  58. Charreire H, Casey R, Salze P, Simon C, Chaix B, Banos A, et al. Measuring the food environment using geographical information systems: a methodological review. Public Health Nutr. 2010;13(11):1773–85.

    Article  PubMed  Google Scholar 

  59. Reidpath DD, Burns C, Garrard J, Mahoney M, Townsend M. An ecological study of the relationship between social and environmental determinants of obesity. Health Place. 2002;8(2):141–5.

    Article  PubMed  Google Scholar 

  60. Torres SJ, Nowson CA. Relationship between stress, eating behavior, and obesity. Nutrition. 2007;23(11):887–94.

    Article  PubMed  Google Scholar 

  61. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009;53(21):1925–32.

    Article  PubMed  Google Scholar 

  62. Kotsis V, Stabouli S, Bouldin M, Low A, Toumanidis S, Zakopoulos N. Impact of obesity on 24-hour ambulatory blood pressure and hypertension. Hypertension. 2005;45(4):602–7.

    Article  CAS  PubMed  Google Scholar 

  63. Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005;307(5708):373–5.

    Article  CAS  PubMed  Google Scholar 

  64. Moore LV, Roux AVD, Nettleton JA, Jacobs DR. Associations of the local food environment with diet quality—a comparison of assessments based on surveys and geographic information systems the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2008;167(8):917–24.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moore LV, Roux AVD, Nettleton JA, Jacobs DR, Franco M. Fast-food consumption, diet quality, and neighborhood exposure to fast food the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2009;kwp090.

  66. Inglis V, Ball K, Crawford D. Socioeconomic variations in women’s diets: what is the role of perceptions of the local food environment? J Epidemiol Community Health. 2008;62(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  67. Sharkey JR, Johnson CM, Dean WR. Food access and perceptions of the community and household food environment as correlates of fruit and vegetable intake among rural seniors. BMC Geriatr. 2010;10(1):1.

    Article  Google Scholar 

  68. Izumi BT, Zenk SN, Schulz AJ, Mentz GB, Wilson C. Associations between neighborhood availability and individual consumption of dark-green and orange vegetables among ethnically diverse adults in Detroit. J Am Diet Assoc. 2011;111(2):274–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Timperio A, Ball K, Roberts R, Campbell K, Andrianopoulos N, Crawford D. Children’s fruit and vegetable intake: associations with the neighbourhood food environment. Prev Med. 2008;46(4):331–5.

    Article  PubMed  Google Scholar 

  70. Michimi A, Wimberly MC. Associations of supermarket accessibility with obesity and fruit and vegetable consumption in the conterminous United States. Int J Health Geogr. 2010;9(1):1.

    Article  Google Scholar 

  71. Powell LM, Zhao Z, Wang Y. Food prices and fruit and vegetable consumption among young American adults. Health Place. 2009;15(4):1064–70.

    Article  PubMed  Google Scholar 

  72. Powell LM, Han E. The costs of food at home and away from home and consumption patterns among US adolescents. J Adolesc Health. 2011;48(1):20–6.

    Article  PubMed  Google Scholar 

  73. Williams L, Ball K, Crawford D. Why do some socioeconomically disadvantaged women eat better than others? An investigation of the personal, social and environmental correlates of fruit and vegetable consumption. Appetite. 2010;55(3):441–6.

    Article  PubMed  Google Scholar 

  74. Thornton LE, Crawford DA, Ball K. Neighbourhood-socioeconomic variation in women’s diet: the role of nutrition environments. Eur J Clin Nutr. 2010;64(12):1423–32.

    Article  CAS  PubMed  Google Scholar 

  75. Caldwell EM, Kobayashi MM, DuBow WM, Wytinck SM. Perceived access to fruits and vegetables associated with increased consumption. Public Health Nutr. 2009;12(10):1743–50.

    Article  PubMed  Google Scholar 

  76. Diez-Roux AV, Nieto FJ, Caulfield L, Tyroler HA, Watson RL, Szklo M. Neighbourhood differences in diet: the Atherosclerosis Risk in Communities (ARIC) Study. J Epidemiol Community Health. 1999;53(1):55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baker EA, Schootman M, Barnidge E, Kelly C. The role of race and poverty in access to foods that enable individuals to adhere to dietary guidelines. Prev Chronic Dis. 2006;3(3):A76.

    PubMed  PubMed Central  Google Scholar 

  78. Zenk SN, Schulz AJ, Hollis-Neely T, Campbell RT, Holmes N, Watkins G, et al. Fruit and vegetable intake in African Americans income and store characteristics. Am J Prev Med. 2005;29(1):1–9.

    Article  PubMed  Google Scholar 

  79. Hill JO, Peters JC. Environmental contributions to the obesity epidemic. Science. 1998;280(5368):1371–4.

    Article  CAS  PubMed  Google Scholar 

  80. Morland K, Diez Roux AV, Wing S. Supermarkets, other food stores, and obesity: the Atherosclerosis Risk in Communities Study. Am J Prev Med. 2006;30(4):333–9.

    Article  PubMed  Google Scholar 

  81. Powell LM, Auld MC, Chaloupka FJ, O’Malley PM, Johnston LD. Associations between access to food stores and adolescent body mass index. Am J Prev Med. 2007;33(4):S301–7.

    Article  PubMed  Google Scholar 

  82. Liu GC, Wilson JS, Qi R, Ying J. Green neighborhoods, food retail and childhood overweight: differences by population density. Am J Health Promot. 2007;21(4s):317–25.

    Article  CAS  PubMed  Google Scholar 

  83. Chi S-H, Grigsby-Toussaint DS, Bradford N, Choi J. Can geographically weighted regression improve our contextual understanding of obesity in the US? Findings from the USDA Food Atlas. Appl Geogr. 2013;44:134–42.

    Article  Google Scholar 

  84. Mehta NK, Chang VW. Weight status and restaurant availability: a multilevel analysis. Am J Prev Med. 2008;34(2):127–33.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Maddock J. The relationship between obesity and the prevalence of fast food restaurants: state-level analysis. Am J Health Promot. 2004;19(2):137–43.

    Article  PubMed  Google Scholar 

  86. Moore LV, Diez Roux AV. Associations of neighborhood characteristics with the location and type of food stores. Am J Public Health. 2006;96(2):325–31.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Leischow SJ, Milstein B. Systems thinking and modeling for public health practice. Am J Public Health. 2006;96(3):403–5.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Leischow SJ, Best A, Trochim WM, Clark PI, Gallagher RS, Marcus SE, et al. Systems thinking to improve the public’s health. Am J Prev Med. 2008;35(2):S196–203.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Luke DA, Stamatakis KA. Systems science methods in public health: dynamics, networks, and agents. Annu Rev Public Health. 2012;33:357–76.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hammond RA, Dubé L. A systems science perspective and transdisciplinary models for food and nutrition security. Proc Natl Acad Sci. 2012;109(31):12356–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li Y, Kong N, Lawley M, Weiss L, Pagán JA. Advancing the use of evidence-based decision-making in local health departments with systems science methodologies. Am J Public Health. 2015;105(S2):S217–22. This study discusses the promise of systems science in promoting evidence-based decision making in local health departments.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mabry PL, Olster DH, Morgan GD, Abrams DB. Interdisciplinarity and systems science to improve population health: a view from the NIH Office of Behavioral and Social Sciences Research. Am J Prev Med. 2008;35(2):S211–24.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mabry PL, Milstein B, Abraido-Lanza AF, Livingood WC, Allegrante JP. Opening a window on systems science research in health promotion and public health. Health Educ Behav. 2013;40(1 suppl):5S–8S.

    Article  PubMed  Google Scholar 

  94. Skinner AC, Foster EM. Systems science and childhood obesity: a systematic review and new directions. J Obes [Internet]. 2013 [cited 2015 May 30];2013. Available from: http://downloads.hindawi.com/journals/jobes/2013/129193.pdf

  95. Wang Y, Xue H, Liu S. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges. Adv Nutr Int Rev J. 2015;6(1):88–95. This study reviews recent systems science models in obesity prevention and points out opportunities and challenges in this line of research.

    Article  Google Scholar 

  96. Epstein JM. Generative social science: studies in agent-based computational modeling. Princeton University Press; 2006.

  97. Bonabeau E. Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci. 2002;99 suppl 3:7280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Macal CM, North MJ. Tutorial on agent-based modelling and simulation. J Simul. 2010;4(3):151–62.

    Article  Google Scholar 

  99. Nianogo RA, Arah OA. Agent-based modeling of noncommunicable diseases: a systematic review. Am J Public Health. 2015;105(3):e20–31. This systematic review provides an overview of agent-based model of chronic conditions and health behaviors.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gorman DM, Mezic J, Mezic I, Gruenewald PJ. Agent-based modeling of drinking behavior: a preliminary model and potential applications to theory and practice. Am J Public Health. 2006;96(11):2055–60.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Levy DT, Mabry PL, Wang YC, Gortmaker S, Huang T-K, Marsh T, et al. Simulation models of obesity: a review of the literature and implications for research and policy. Obes Rev. 2011;12(5):378–94.

    Article  CAS  PubMed  Google Scholar 

  102. Dauchet L, Amouyel P, Hercberg S, Dallongeville J. Fruit and vegetable consumption and risk of coronary heart disease: a meta-analysis of cohort studies. J Nutr. 2006;136(10):2588–93.

    CAS  PubMed  Google Scholar 

  103. Montonen J, Knekt P, Härkänen T, Järvinen R, Heliövaara M, Aromaa A, et al. Dietary patterns and the incidence of type 2 diabetes. Am J Epidemiol. 2005;161(3):219–27.

    Article  PubMed  Google Scholar 

  104. Epstein LH, Gordy CC, Raynor HA, Beddome M, Kilanowski CK, Paluch R. Increasing fruit and vegetable intake and decreasing fat and sugar intake in families at risk for childhood obesity. Obes Res. 2001;9(3):171–8.

    Article  CAS  PubMed  Google Scholar 

  105. Auchincloss AH, Riolo RL, Brown DG, Cook J, Roux AVD. An agent-based model of income inequalities in diet in the context of residential segregation. Am J Prev Med. 2011;40(3):303–11.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jack D, Neckerman K, Schwartz-Soicher O, Lovasi GS, Quinn J, Richards C, et al. Socio-economic status, neighbourhood food environments and consumption of fruits and vegetables in New York City. Public Health Nutr. 2013;16(7):1197–205.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gordon C, Purciel-Hill M, Ghai NR, Kaufman L, Graham R, Van Wye G. Measuring food deserts in New York City’s low-income neighborhoods. Health Place. 2011;17(2):696–700.

    Article  PubMed  Google Scholar 

  108. Li Y, Zhang D, Pagán JA. Social norms and the consumption of fruits and vegetables across New York City neighborhoods. J Urban Health. 2016;93(2):244–55. This study presents an agent-based model of dietary behaviors that can be used to predict the consumption of fruits and vegetables in New York City.

    Article  PubMed  Google Scholar 

  109. New York City Department of Health and Mental Hygiene. New York City Community Health Survey (CHS), 2010 [Internet]. [cited 2015 Sep 24]. Available from: http://www.nyc.gov/html/doh/html/data/chs-data.shtml

  110. US Census Bureau. 2010 ZIP Code Business Patterns (ZBP) [Internet]. [cited 2015 Sep 25]. Available from: http://www.census.gov/econ/cbp/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Ethics declarations

Conflict of Interest

Yan Li, Julia Berenson, Amanda Gutiérrez, and José A. Pagán declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Diabetes and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Berenson, J., Gutiérrez, A. et al. Leveraging the Food Environment in Obesity Prevention: the Promise of Systems Science and Agent-Based Modeling. Curr Nutr Rep 5, 245–254 (2016). https://doi.org/10.1007/s13668-016-0179-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-016-0179-1

Keywords

Navigation