Skip to main content

Advertisement

Log in

Development of Ultrafine-Grained Al–Mg–Si Alloy Through SPD Processing

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In the present investigation, ultrafine-grained Al alloy was produced from its bulk alloy by cryoforging followed by cryorolling. The bulk Al–Mg–Si alloy, with initial grain size 400 μm, was subjected to solid solution treatment (ST) followed by water quenching at room temperature. The ST treated alloy was subjected to aging at 100 °C for 4 and 8 h prior to cryoforging. The cryoforged alloy was subjected to cryorolling up to 2.4 true strain for producing long sheets. Finally, the deformed alloy was subjected to low temperature aging at 120 °C to improve the tensile properties of the alloys. Microstructure and mechanical properties were evaluated through Vickers hardness testing, tensile testing, and electron back scattered diffraction. The results have shown that combined cryoforging + cryorolling followed by aging led to remarkable improvement in strength (UTS-452 MPa) and ductility (8%). The average grain size of the alloy was found to be 240 nm, with increased fraction of high angle grain boundaries. Low temperature differential scanning calorimetry was used to study thermal behavior of bulk and severely deformed alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 280(1), 37–49 (2000)

    Article  Google Scholar 

  2. E. Wang, T. Gao, J. Nie, X. Liu, Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al–Ti–C (B) master alloys. J. Alloys Compd. 594, 7–11 (2014)

    Article  Google Scholar 

  3. Y. Birol, Production of Al–Ti–B master alloys from Ti sponge and KBF4. J. Alloys Compd. 440(1–2), 108–112 (2007)

    Article  Google Scholar 

  4. R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51(7), 881–981 (2006)

    Article  Google Scholar 

  5. A. Zhilyaev, T. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater Sci. 53(6), 893–979 (2008)

    Article  Google Scholar 

  6. H.W. Kim, S.B. Kang, N. Tsuji, Y. Minamino, Elongation increase in ultra-fine grained Al–Fe–Si alloy sheets. Acta Mater. 53(6), 1737–1749 (2005)

    Article  Google Scholar 

  7. S. Biswas, S. Suwas, Evolution of sub-micron grain size and weak texture in magnesium alloy Mg–3Al–0.4Mn by a modified multi-axial forging process. Scr. Mater. 66(2), 89–92 (2012)

    Article  Google Scholar 

  8. H. Yu, C. Lu, K. Tieu, X. Liu, Y. Sun, Q. Yu, C. Kong, Asymmetric cryorolling for fabrication of nanostructural aluminum sheets. Sci. Rep. 2, 772 (2012)

    Google Scholar 

  9. K.B. Nie, K.K. Deng, X.J. Wang, F.J. Xu, K. Wu, M.Y. Zheng, Multidirectional forging of AZ91 magnesium alloy and its effects on microstructures and mechanical properties. Mater. Sci. Eng. A 624, 157–168 (2015)

    Article  Google Scholar 

  10. H. Miura, T. Maruoka, X. Yang, J.J. Jonas, Microstructure and mechanical properties of multi-directionally forged Mg–Al–Zn alloy. Scr. Mater. 66(1), 49–51 (2012)

    Article  Google Scholar 

  11. H. Miura, T. Maruoka, J.J. Jonas, Effect of ageing on microstructure and mechanical properties of a multi-directionally forged Mg–6Al–1Zn alloy. Mater. Sci. Eng. A 563, 53–59 (2013)

    Article  Google Scholar 

  12. Y. Wang, T. Jiao, E. Ma, Dynamic processes for nanostructure development in Cu after severe cryogenic rolling deformation. Mater. Trans. 44(10), 1926–1934 (2003)

    Article  Google Scholar 

  13. P.N. Rao, D. Singh, R. Jayaganthan, Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature. Mater. Des. 56, 97–104 (2014)

    Article  Google Scholar 

  14. Y. Nakao, H. Miura, T. Sakai, Microstructural evolution and recrystallization behavior in copper multi-directionally forged at 77 K. Adv. Mater. Res. 15–17, 649–654 (2007)

    Article  Google Scholar 

  15. Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal. 419, 912–915 (2002)

    Google Scholar 

  16. D. Singh, P. Nageswara Rao, R. Jayaganthan, Microstructural studies of Al 5083 alloy deformed through cryorolling. Adv. Mater. Res. 585, 376–380 (2012)

    Article  Google Scholar 

  17. E.V. Naidenkin, K.V. Ivanov, E.V. Golosov, Effect of cryorolling on the structure and the mechanical properties of ultrafine-grained nickel. Russ. Metall. 2014(4), 303–307 (2014)

    Article  Google Scholar 

  18. P. NageswaraRao, M. Gopi, R. Jayaganthan, Effect of cryorolling and ageing on microstructure, mechanical properties and corrosion behavior of Al–Cu–Mg–Si alloy. Banaras Met. 19, 19–25 (2014)

    Google Scholar 

  19. Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61(3), 782–817 (2013)

    Article  Google Scholar 

  20. T. Sakai, H. Miura, X. Yang, Ultrafine grain formation in face centered cubic metals during severe plastic deformation. Mater. Sci. Eng. A 499(1–2), 2–6 (2009)

    Article  Google Scholar 

  21. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103–189 (2000)

    Article  Google Scholar 

  22. M. Weiss, A.S. Taylor, P.D. Hodgson, N. Stanford, Strength and biaxial formability of cryo-rolled 2024 aluminium subject to concurrent recovery and precipitation. Acta Mater. 61(14), 5278–5289 (2013)

    Article  Google Scholar 

  23. Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia, Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr. Mater. 59(6), 627–630 (2008)

    Article  Google Scholar 

  24. S. Cheng, Y.H. Zhao, Y.T. Zhu, E. Ma, Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 55(17), 5822–5832 (2007)

    Article  Google Scholar 

  25. A.K. Gupta, D.J. Lloyd, S.A. Court, Precipitation hardening processes in an Al–0.4%Mg–1.3%Si–0.25%Fe aluminum alloy. Mater. Sci. Eng. A 301, 140–146 (2001)

    Article  Google Scholar 

  26. G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46(11), 3893–3904 (1998)

    Article  Google Scholar 

  27. X. Wang, S. Esmaeili, D.J. Lloyd, The sequence of precipitation in the Al–Mg–Si–Cu alloy AA6111. Metall. Mater. Trans. A 37, 2691–2699 (2006)

    Article  Google Scholar 

  28. A. Gaber, M.A. Gaffar, M.S. Mostafa, E.F.A. Zeid, Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys. J. Alloys Compd. 429(1–2), 167–175 (2007)

    Article  Google Scholar 

  29. C. Marioara, S. Andersen, J. Jansen, H. Zandbergen, The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy. Acta Mater. 51(3), 789–796 (2003)

    Article  Google Scholar 

  30. P.N. Rao, B. Viswanadh, R. Jayaganthan, Effect of cryorolling and warm rolling on precipitation evolution in Al 6061 alloy. Mater. Sci. Eng. A 606, 1–10 (2014)

    Article  Google Scholar 

  31. H.L. Lee, W.H. Lu, S.L.I. Chan, Effect of cold rolling on the aging kinetics of Al composite by differential scanning calorimetric technique. Scr. Metall. Mater. 25(9), 2165–2170 (1991)

    Article  Google Scholar 

  32. Y. Birol, The effect of sample preparation on the DSC analysis of 6061 alloy. J. Mater. Sci. 40, 6357–6361 (2005)

    Article  Google Scholar 

  33. C.S.T. Chang, J. Banhart, Low-temperature differential scanning calorimetry of an Al–Mg–Si alloy. Metall. Mater. Trans. A 42(7), 1960–1964 (2011)

    Article  Google Scholar 

  34. A. Cuniberti, A. Tolley, M.V.C. Riglos, R. Giovachini, Influence of natural aging on the precipitation hardening of an Al–Mg–Si alloy. Mater. Sci. Eng. A 527(20), 5307–5311 (2010)

    Article  Google Scholar 

  35. A. Serizawa, S. Hirosawa, T. Sato, Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al–Mg–Si alloy. Metall. Mater. Trans. A 39(2), 243–251 (2008)

    Article  Google Scholar 

  36. L. He, H. Zhang, J. Cui, Effects of pre-ageing treatment on subsequent artificial ageing characteristics of an Al–1.01 Mg–0.68Si–1.78Cu alloy. J. Mater. Sci. Technol. 26(2), 141–145 (2010)

    Article  Google Scholar 

  37. L. Cao, P.A. Rometsch, M.J. Couper, Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A. Mater. Sci. Eng. A 571, 77–82 (2013)

    Article  Google Scholar 

  38. G.K. Quainoo, S. Yannacopoulos, The effect of cold work on the precipitation kinetics of AA6111 aluminum. J. Mater. Sci. 39(21), 6495–6502 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M., Nageswara Rao, P. & Jayaganthan, R. Development of Ultrafine-Grained Al–Mg–Si Alloy Through SPD Processing. Metallogr. Microstruct. Anal. 4, 219–228 (2015). https://doi.org/10.1007/s13632-015-0205-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-015-0205-5

Keywords

Navigation