Skip to main content

Advertisement

Log in

Fracture Behavior of AZ31 Magnesium Alloy During Low-Stress High-Temperature Deformation

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Investigation of creep behavior of AZ31 magnesium alloy at three different temperatures (230, 270, and 350 °C) and stresses of 1–13 MPa reveals that grain boundary sliding (GBS) is the dominant creep mechanism at elevated temperatures and low stresses. GBS and Mg17Al12 precipitates in Mg–Al alloys result in stress concentration sites for cavity formation during high-temperature low-strain rate deformation leading to premature failures. Analysis of fractured surfaces of samples deformed at 350 °C reveals that brittle-type fracture (inter-granular and trans-granular) is the dominant mechanism at low stresses (σ = 1–5 MPa) while at higher stresses (σ = 7–13 MPa) dimple ruptures are predominant. Grain growth, dynamic recovery, and a decrease in dislocation density are characteristics of low-stress deformation of AZ31 alloys in GBS region whereas increase in dislocation density and dynamic recrystallization is noted during deformation under higher stresses where dislocation creep was noted to be predominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. Farahbakhsh, P.S. Roodposhti, A.S. Ayoub, R.A. Venditti, J.S. Jur, Melt extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J. Appl. Polym. Sci. (2015). doi:10.1002/app.41857

    Google Scholar 

  2. P.S. Roodposhti, A. Sarkar, K.L. Murty, A review of the influence of production methods and intermetallic phases on the creep properties of AZ91. Magn. Technol. 2014, 59–64 (2014)

    Google Scholar 

  3. H. Somekawa, H. Watanabe, T. Mukai, Effect of solute atoms on grain boundary sliding in magnesium alloys. Philos. Mag. 94(12), 1345–1360 (2014)

    Article  Google Scholar 

  4. S.W. Chung, H. Watanabe, W.-J. Kim, K. Higashi, Creep deformation mechanisms in coarse-grained solid solution Mg alloys. Mater. Trans. 45(4), 1266–1271 (2004)

    Article  Google Scholar 

  5. R. Korla, A.H. Chokshi, A constitutive equation for grain boundary sliding: an experimental approach. Metall. Mater. Trans. A 45(2), 698–708 (2013)

    Article  Google Scholar 

  6. R.B. Figueiredo, T.G. Langdon, Developing superplasticity in a magnesium AZ31 alloy by ECAP. J. Mater. Sci. 43(23–24), 7366–7371 (2008)

    Article  Google Scholar 

  7. S. Spigarelli, M. El Mehtedi, D. Ciccarelli, M. Regev, Effect of grain size on high temperature deformation of AZ31 alloy. Mater. Sci. Eng. A 528(22–23), 6919–6926 (2011)

    Article  Google Scholar 

  8. S. Spigarelli, M. El Mehtedi, M. Cabibbo, E. Evangelista, J. Kaneko, A. Jäger, V. Gartnerova, Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy. Mater. Sci. Eng. A 462(1–2), 197–201 (2007)

    Article  Google Scholar 

  9. H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi, Dislocation creep behavior in Mg–Al–Zn alloys. Mater. Sci. Eng. A 407(1–2), 53–61 (2005)

    Article  Google Scholar 

  10. K. Ishikawa, H. Watanabe, T. Mukai, High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy. J. Mater. Sci. 40(7), 1577–1582 (2005)

    Article  Google Scholar 

  11. A.G. Beer, M.R. Barnett, Influence of initial microstructure on the hot working flow stress of Mg–3Al–1Zn. Mater. Sci. Eng. A 423(1–2), 292–299 (2006)

    Article  Google Scholar 

  12. S.-H. Choi, J.K. Kim, B.J. Kim, Y.B. Park, The effect of grain size distribution on the shape of flow stress curves of Mg–3Al–1Zn under uniaxial compression. Mater. Sci. Eng. A 488(1–2), 458–467 (2008)

    Article  Google Scholar 

  13. H.-K. Kim, W.-J. Kim, Creep behavior of AZ31 magnesium alloy in low temperature range between 423 and 473 K. J. Mater. Sci. 42(15), 6171–6176 (2007)

    Article  Google Scholar 

  14. J.A. Del Valle, O.A. Ruano, Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction. Metall. Mater. Trans. A 36, 1427–1438 (2005)

    Article  Google Scholar 

  15. S.W. Chung, C.S. Chung, D. Kum, Super plasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium. Acta Mater. 49, 3337–3345 (2001)

    Article  Google Scholar 

  16. K. Kitazono, E. Sato, K. Kuribayashi, Internal stress superplasticity in polycrystalline AZ31 magnesium alloy. Scripta Mater. 44(12), 2695–2702 (2001)

    Article  Google Scholar 

  17. P. Shahbeigi Roodposhti, N. Farahbakhsh, A. Sarkar, K.L. Murty, A review on the equal channel angular process of commercially pure titanium, in Proc. MS&T14 (2014), pp. 1559–1566

  18. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama, Grain-boundary sliding in AZ31 magnesium alloys at room temperature to 523 K. Mater. Trans. 44(4), 445–451 (2003)

    Article  Google Scholar 

  19. S.S. Vagarali, T.G. Langdon, Deformation mechanisms in HCP metals at elevated temperatures—II. Creep behavior of a Mg-0.8% Al solid solution alloy. Acta Metall. 30(6), 1157–1170 (1982)

    Article  Google Scholar 

  20. S. Ansary, R. Mahmudi, M.J. Esfandyarpour, Creep of AZ31 Mg alloy: a comparison of impression and tensile behavior. Mater. Sci. Eng. A 556, 9–14 (2012)

    Article  Google Scholar 

  21. H. Somekawa, T. Mukai, Molecular dynamics simulation of grain boundary plasticity in magnesium and solid-solution magnesium alloys. Comput. Mater. Sci. 77, 424–429 (2013)

    Article  Google Scholar 

  22. R.B. Figueiredo, T.G. Langdon, Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP. Mater. Sci. Eng. A 501(1–2), 105–114 (2009)

    Article  Google Scholar 

  23. M.R.R. Panicker, A.H. Chokshi, Influence of grain size on high temperature fracture in a Mg AZ31 alloy. Mater. Sci. Eng. A 528(7–8), 3031–3036 (2011)

    Article  Google Scholar 

  24. C.J. Lee, J.C. Huang, Cavitation characteristics in AZ31 Mg alloys during LTSP or HSRSP. Acta Mater. 52(10), 3111–3122 (2004)

    Article  Google Scholar 

  25. Y.C. Lin, M.-S. Chen, J. Zhong, Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel. J. Mater. Process. Technol. 205(1–3), 308–315 (2008)

    Article  Google Scholar 

  26. J. Deng, Y.C. Lin, S. Li, J. Chen, Y. Ding, Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy. Mater. Des. 49, 209–219 (2013)

    Article  Google Scholar 

  27. G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953)

    Article  Google Scholar 

  28. P.S. Roodposhti, A. Sarkar, K.L. Murty, Microstructure development of high temperature deformed AZ31 magnesium alloys. Mater. Sci. Eng. A 626, 195–202 (2015)

    Article  Google Scholar 

  29. P.S. Roodposhti, A. Sarkar, K.L. Murty, Creep deformation mechanisms and related microstructure development of AZ31 Magnesium alloy. Magn. Technol. (2015), in press

  30. G.K. Williamson, R.E. Smallman III, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1(1), 34–46 (1956)

    Article  Google Scholar 

  31. W.P. Peng, P.J. Li, P. Zeng, L.P. Lei, Hot deformation behavior and microstructure evolution of twin-roll-cast Mg–2.9Al–0.9Zn alloy: a study with processing map. Mater. Sci. Eng. A 494(1–2), 173–178 (2008)

    Article  Google Scholar 

  32. O. Sabokpa, A. Zarei-Hanzaki, H.R. Abedi, An investigation into the hot ductility behavior of AZ81 magnesium alloy. Mater. Sci. Eng. A 550, 31–38 (2012)

    Article  Google Scholar 

  33. W. Qudong, C. Wenzhou, Z. Xiaoqin, L.U. Yizhen, Effects of Ca addition on the microstructure and mechanical properties of AZ91 magnesium alloy. J. Mater. Sci. 6, 3035–3040 (2001)

    Article  Google Scholar 

  34. J.N. Greenwood, D. Miller, J. Suiter, Intergranular cavitation in stressed metals. Acta Metall. 2(2), 250–258 (1954)

    Article  Google Scholar 

  35. R. Raj, M. Ashby, Intergranular fracture at elevated temperature. Acta Metall. 23(6), 653–666 (1975)

    Article  Google Scholar 

  36. B. Cunningham, K.H.G. Ashbee, Marmem engines. Acta Metall. 25(11), 1315–1321 (1977)

    Article  Google Scholar 

  37. A.H. Chokshi, T.G. Langdon, A model for diffusional cavity growth in superplasticity. Acta Metall. 35(5), 1089–1101 (1987)

    Article  Google Scholar 

  38. P.D. Nicolaou, S.L. Semiatin, Modeling of cavity coalescence during tensile deformation. Acta Mater. 47(13), 3679–3686 (1999)

    Article  Google Scholar 

  39. P. Nicolaou, S. Semiatin, An analysis of the effect of continuous nucleation and coalescence on cavitation during hot tension testing. Acta Mater. 48(13), 3441–3450 (2000)

    Article  Google Scholar 

  40. L. Angeles, The development of cavity growth maps for superplastic materials. J. Mater. Sci. 21, 2073–2082 (1986)

    Article  Google Scholar 

  41. R. Raj, Nucleation of cavities at second phase particles in grain boundaries. Acta Metall. 26(6), 995–1006 (1978)

    Article  Google Scholar 

  42. A.H. Chokshit, A.K. Mukherjee, An analysis of cavity nucleation in superplasticity. Acta Metall. 37(11), 3007–3017 (1989)

    Article  Google Scholar 

  43. A.H. Chokshi, Cavity nucleation and growth in superplasticity. Mater. Sci. Eng. A 410–411, 95–99 (2005)

    Article  Google Scholar 

  44. D.A. Miller, T.G. Langdon, An analysis of cavity growth during superplasticity. Metall. Trans. A 10A, 1869–1874 (1979)

    Article  Google Scholar 

  45. A.H. Chokshi, A.K. Mukherjee, The cavitation and fracture characteristics of a superplastic Al-Cu-Li-Zr alloy. Mater. Sci. Eng. A 110, 49–60 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Science Foundation Grant 0968825.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiman Shahbeigi Roodposhti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roodposhti, P.S., Sarkar, A. & Murty, K.L. Fracture Behavior of AZ31 Magnesium Alloy During Low-Stress High-Temperature Deformation. Metallogr. Microstruct. Anal. 4, 91–101 (2015). https://doi.org/10.1007/s13632-015-0189-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-015-0189-1

Keywords

Navigation