Skip to main content
Log in

Protective effect of exogenous spermidine on ion and polyamine metabolism in Kentucky bluegrass under salinity stress

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Spermidine (Spd) acts as a plant protectant under salinity stress. The objective of this study was to determine whether exogenous Spd pre-treatment could improve the salinity tolerance of Kentucky bluegrass (Poa pratensis L.). Exogenous Spd was applied before the grass was exposed to 200 mM sodium chloride (NaCl) for 28 d in the growth chamber. Salinity stress decreased chlorophyll (Chl) content, K+/Na+ ratio and K+, Ca2+, and Mg2+ contents, and increased electrolyte leakage (EL), proline, Na+, putrescine (Put), Spd and Spermine (Spm) levels and the activities of arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC) and polyamine oxidase (PAO). Pre-treatment with 1 mM Spd effectively alleviated the decline of Chl content, K+/Na+ ratio and K+, Ca2+, and Mg2+ contents under salinity stress conditions. Spd pre-treatment also reduced EL, Na+ content, Put levels and the activities of ADC and PAO, but increased proline content, endogenous Spd and Spm levels and the activities of ODC and SAMDC upon salinity stress. These results indicate that exogenous Spd pre-treatment could enhance salinity tolerance by increasing proline levels and regulating ion and polyamine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ahmad, P., M.M. Azooz, and M.N.V. Prasad. 2013. Ecophysiology and responses of plants under salt stress. Springer, NY, USA.

    Book  Google Scholar 

  • Alcázar, R., T. Altabella, F. Marco, C. Bortolotti, M. Reymond, C. Koncz, P. Carrasco, and A.F. Tiburcio. 2010. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231;1237–1249.

    Article  PubMed  Google Scholar 

  • Bagni, N. and A. Tassoni. 2001. Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20;301–317.

    Article  CAS  PubMed  Google Scholar 

  • Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39;205–207.

    Article  CAS  Google Scholar 

  • Bizhani, S. and H. Salehi. 2014. Physio-morphological and structural changes in common bermudagrass and Kentucky bluegrass during salt stress. Acta Physiol. Plant. 36;777–786.

    Article  CAS  Google Scholar 

  • Blum, A. and A. Ebercon. 1981. Cell membrane stability as a measurement of drought and heat tolerance in wheat. Crop Sci. 21;43–47.

    Article  Google Scholar 

  • Bouchereau, A., A. Aziz, F. Larher, and J. Martin-Tanguy. 1999. Polyamines and environmental challenges: recent development. Plant Sci. 140;103–125.

    Article  CAS  Google Scholar 

  • Carrow, R.N. and R.R. Duncan. 1998. Salt-affected turfgrass sites: assessment and management. Ann Arbor Press, Chelsea, Michigan, USA.

    Google Scholar 

  • Chattopadhayay, M.K., B.S. Tiwari, G. Chattopadhyay, A. Bose, D.N. Sengupta, and B. Ghosh. 2002. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol. Plant. 116; 192–199.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F.M. 1984. Determining the chlorophyll contents of plant leaves by acetone/ethanol mixture assay. For. Sci. Commun. 2;4–8.

    Google Scholar 

  • Del Duca, S., S. Beninati, and D. Serafini-Fracassini. 1995. Polyamine in chloroplasts: Identification of their glutamyl and acetyl derivatives. Biochem. J. 305;233–237.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan, J.J., J. Li, S.R. Guo, and Y.Y. Kang. 2008. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J. Plant Physiol. 165;1620–1635.

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin, Q., P. Varshney, M. Yusuf, and A. Ahmad. 2013. Polyamines: potent modulators of plant responses to stress. J. Plant Interact. 8;1–16.

    Article  CAS  Google Scholar 

  • Gill, S.S. and N. Tuteja. 2010. Polyamines and abiotic stress tolerance in plants. Plant Signal. Behav. 5;26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greweling, T. 1976. Chemical analysis of plant tissue. Search Agric. 6;1–35.

    Google Scholar 

  • Groppa, M.D. and M.P. Benavides. 2008. Polyamines and abiotic stress: recent advances. Amino Acids 34;35–45.

    Article  CAS  PubMed  Google Scholar 

  • Groppa, M.D., E.P. Rosales, M.F. Iannone, and M.P. Benavides. 2008. Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69;2609–2615.

    Article  CAS  PubMed  Google Scholar 

  • Hoagland, D.R. and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Calif. Agric. Exp. Sta. Circ. 347;1–32.

    Google Scholar 

  • Hu, X.H., Y. Zhang, Y. Shi, Z. Zhang, Z.R. Zou, H. Zhang, and J.Z. Zhao. 2012. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity–alkalinity mixed stress. Plant Physiol. Biochem. 57;200–209.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, S.S., M. Ali, M. Ahmad, and K.H.M. Siddique. 2011. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol. Adv. 29;300–311.

    Article  CAS  PubMed  Google Scholar 

  • Idrees, M., M. Naeem, M.N. Khan, T. Aftab, M.M.A. Khan, and Moinuddin 2012. Alleviation of salt stress in lemongrass by salicylic acid. Protoplasma 249;709–720.

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Bremont, J.F., A. Becerra-Flora, E. Hernández-Lucero, M. Rodríguez-Kessler, J.A. Acosta-Gallegos, and J.G. Ramírez-Pimentel. 2006. Proline accumulation in two bean cultivars under salt stress and the effect of polyamines and ornithine. Biol. Plant. 50;763–766.

    Article  Google Scholar 

  • Jones, J.B., J.B. Wolf, and H.A. Mills. 1991. Plant analysis handbook. Micro-Macro Publishing, Inc., Athens, Georgia, USA.

    Google Scholar 

  • Kusano, T., T. Berberich, C. Tateda, and Y. Takahashi. 2008. Polyamines: essential factors for growth and survival. Planta 228;367–381.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C.C., Y.T. Hsu, and C.H. Kao. 2002. The effect of NaCl on proline accumulation in rice leaves. Plant Growth Regul. 36;275–285.

    Article  CAS  Google Scholar 

  • Liu, J.H., H. Kitashiba, J. Wang, Y. Ban, and T. Moriguchi. 2007. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol. 24;117–126.

    Article  CAS  Google Scholar 

  • Lopatin, A.N., E.N. Makhina, and C.G. Nichols. 1994. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372;366–369.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Tanguy, J. 1997. Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiol. Plant. 11;675–688.

    Article  Google Scholar 

  • Moschou, P.N., I.D. Delis, K.A. Paschalidis, and K.A. Roubelakis-Angelakis. 2008. Transgenic tobacco plants overexpressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiol. Plant. 133;140–156.

    Article  CAS  PubMed  Google Scholar 

  • Ndayiragije, A. and S. Lutts. 2006. Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl? J. Plant Physiol. 163;506–516.

    Article  CAS  PubMed  Google Scholar 

  • Ohe, M., M. Kobayashi, M. Niitsu, N. Bagni, and S. Matsuzaki. 2005. Analysis of polyamine metabolism in soybean seedlings using 15N-labelled putrescine. Phytochemistry 66;523–528.

    Article  CAS  PubMed  Google Scholar 

  • Parvin, S., O.R. Lee, G. Sathiyaraj, A. Khorolragchaa, Y.J. Kim, and D.C. Yang. 2014. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene 537; 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Pottosin, I. and S. Shabala, 2014. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front. Plant Sci. 5;1–16.

    Article  Google Scholar 

  • Roy, P., K. Niyogi, D.N. SenGupta, and B. Ghosh. 2005. Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci. 168;583–591.

    Article  CAS  Google Scholar 

  • Roychoudhury, A., S. Basu, and D.N. Sengupta. 2011. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J. Plant Physiol. 168:317–328.

    Article  CAS  PubMed  Google Scholar 

  • Saleethong, P., J. Sanitchon, K. Kong-ngern, and P. Theerakulpisut. 2011. Pretreatment with spermidine reverses inhibitory effects of salt stress in two rice (Oryza sativa L.) cultivars differing in salinity tolerance. Asian J. Plant Sci. 10;245–254.

    Article  CAS  Google Scholar 

  • Schuber, F. 1989. Influence of polyamines on membrane functions. Biochem. J. 260;1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala, S., T.A. Cuin, and I. Pottosin. 2007. Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking nonselective cation channels. FEBS Letters 581;1993–1999.

    Article  CAS  PubMed  Google Scholar 

  • Shen, W.Y., K. Nada, and S. Tachibana. 2000. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiol. 124;431–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, H.T., T.T. Ye, and Z.L. Chan. 2013. Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. J. Proteome Res. 12;4951–4964.

    Article  CAS  PubMed  Google Scholar 

  • Shu, S., L.Y. Yuan, S.R. Guo, J. Sun, and Y.H. Yuan. 2013. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol. Biochem. 63;209–216.

    Article  CAS  PubMed  Google Scholar 

  • Slocum, R.D. and H.E. Flores. 1991. Biochemistry and physiology of polyamines in plants. CRC press, Boca Raton, USA.

    Google Scholar 

  • Slocum, R.D., R. Kaur-Sawhney, and A.W. Galston. 1984. The physiology and biochemistry of polyamines in plants. Arch. Biochemi. Biophys. 235;283–303.

    Article  CAS  Google Scholar 

  • Smethurst, C.F. and S. Shabala. 2003. Screening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 30;335–343.

    Article  Google Scholar 

  • Smith, T.A. 1985. Polyamines. Annu. Rev. Plant Physiol. 36;117–143.

    Article  CAS  Google Scholar 

  • Tiburcio, A.F., T. Altabella, A. Borell, and C. Masgrau. 1997. Polyamine metabolism and its regulation. Physiol. Plant. 100;664–674.

    Article  CAS  Google Scholar 

  • Velarde-Buendía, A.M., S. Shabala, M. Cvikrova, O. Dobrovinskaya, and I. Pottosin. 2012. Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol. Biochem. 61;18–23.

    Article  PubMed  Google Scholar 

  • Yamaguchi, K., Y. Takahashi, T. Berberich, A. Imai, T. Takahashi, A.J. Michael, and T. Kusano. 2007. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem. Biophys. Res. Commun. 352;486–490.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G.W., S.C. Xu, Q.Z. Hu, W.H. Mao, and Y.M. Gong. 2014. Putrescine plays a positive role in salt-tolerance mechanisms by reducing oxidative damage in roots of vegetable soybean. J. Integr. Agric. 13;349–357.

    Article  CAS  Google Scholar 

  • Zhao, F.G., C.P. Song, J.Q. He, and H. Zhu. 2007. Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol. 3;1061–1072.

    Article  Google Scholar 

  • Zhao, F.G., C. Sun, Y.L. Liu, W.H. Zhang. 2003. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Bot. Sin. 45;295–300.

    CAS  Google Scholar 

  • Zhu, J.K. 2001. Plant salt tolerance. Plant Sci. 6;66–71.

    Article  CAS  Google Scholar 

  • Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53;247–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liebao Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puyang, X., An, M., Xu, L. et al. Protective effect of exogenous spermidine on ion and polyamine metabolism in Kentucky bluegrass under salinity stress. Hortic. Environ. Biotechnol. 57, 11–19 (2016). https://doi.org/10.1007/s13580-016-0113-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-016-0113-x

Additional key words

Navigation