Skip to main content
Log in

The integration of radiation therapy and immunotherapy in melanoma management

  • Review
  • Published:
Journal of Radiation Oncology

Abstract

Melanoma has long been considered an “immunologic” malignancy because of numerous reports of spontaneous regression as well as abscopal phenomena along with its relative responsiveness to cancer immunotherapy. Over the past few years, there has been a resurgence of interest in cancer immunotherapy with particular focus on melanoma. Many new immunotherapeutic interventions have arisen, some with notable clinical efficacy. One such example is the current generation of checkpoint inhibitors. In this article, we shall review the recent data on checkpoint inhibition in melanoma along with a brief review of other immunotherapeutic approaches, including the encouraging and expanding role of radiation therapy in integrated immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Balch CM, Gershenwald JE, Soong SJ, et al. (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27:6199–6206

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barker CA, Lee NY (2012) Radiation therapy for cutaneous melanoma. Dermatol Clin 30:525–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Munzenrider JE (2001) Uveal melanomas. Conservation treatment. Hematol Oncol Clin North Am 15:389–402

    Article  CAS  PubMed  Google Scholar 

  4. Kirova YM, Chen J, Rabarijaona LI, et al. (1999) Radiotherapy as palliative treatment for metastatic melanoma. Melanoma Res 9:611–613

    Article  CAS  PubMed  Google Scholar 

  5. Coley W (1893) Am J Med Sci 105:487–510

    Article  Google Scholar 

  6. Couzin-Frankel J (2013) Cancer immunotherapy. Science 342:1432–1433

    Article  CAS  PubMed  Google Scholar 

  7. Kingsley DP (1975) An interesting case of possible abscopal effect in malignant melanoma. Br J Radiol 48:863–866

    Article  CAS  PubMed  Google Scholar 

  8. Stamell EF, Wolchok JD, Gnjatic S, Lee NY, Brownell I (2013) The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys 85(2):293–295

    Article  PubMed  PubMed Central  Google Scholar 

  9. Postow MA, Callahan MK, Barker CA, Yamada Y, et al. (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366:925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Welsh J (2014) Disappearing act: an athletic young man’s skin cancer is spreading rapidly and is likely to be fatal—then his health takes a strange turn. Discover Magazine 24-26

  11. Kalialis LV, Drzewiecki KT, Klyver H (2009) Spontaneous regression of metastases from melanoma: review of the literature. Melanoma Res 19:275–282

    Article  PubMed  Google Scholar 

  12. High WA, Stewart D, Wilbers CR, Cockerell CJ, Hoang MP, Fitzpatrick JE (2005) Completely regressed primary cutaneous malignant melanoma with nodal and/or visceral metastases: a report of 5 cases and assessment of the literature and diagnostic criteria. J Am Acad Dermatol 53(1):89–100

    Article  PubMed  Google Scholar 

  13. Clemente CG, Mihm MC Jr, Bufalino R, et al. (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303

  14. Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D (2015) The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev 41(6):503–510

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  16. Bodurtha AJ (1979) Spontaneous regression of melanoma. In: Clark WH, Goldman LI, Mastrangelo LM (eds) Human melanoma. Grune and Stratton, New York, pp. 227–241

    Google Scholar 

  17. Emanuel PO, Mannion M, Phelps RG (2008) Complete regression of primary malignant melanoma. Am J Dermatopathol 30:178–181

    Article  PubMed  Google Scholar 

  18. Smith JL, Stehlin JS (1965) Spontaneous regression of primary melanomas with regional metastases. Cancer 18:1399–1415

    Article  PubMed  Google Scholar 

  19. Tuthill RJ, Unger JM, Liu PY, Flaherty LE, Sondak LEVK (2002) Risk assessment in localized primary cutaneous melanoma: a Southwest Oncology Group study evaluating nine factors and a test of the Clark logistic regression prediction model. Am J Clin Pathol 118(4):504–511

    Article  PubMed  Google Scholar 

  20. Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW, Saw RP, Thompson JF (2012) Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol 30(21):2678–2683

    Article  PubMed  Google Scholar 

  21. Teulings HE, Limpens J, Jansen SN, Zwinderman AH, Reitsma JB, Spuls PI, Luiten RM (2015) Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol 33(7):773–781

    Article  CAS  PubMed  Google Scholar 

  22. Gogas H, Ioannovich J, Dafni U, et al. (2006) Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 354:709–718

    Article  CAS  PubMed  Google Scholar 

  23. Atkins MB, Mier JW, Parkinson DR, Gould JA, Berkman EM, Kaplan MM (1988) Hypothyroidism after treatment with interleukin-2 and lymphokine-activated killer cells. N Engl J Med 318:1557–1563

    Article  CAS  PubMed  Google Scholar 

  24. Phan GQ, Attia P, Steinberg SM, White DE, Rosenberg SA (2001) Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J Clin Oncol 19:3477–3482

    CAS  PubMed  Google Scholar 

  25. Pavlick AC, Ott PA, Kannan R, et al. (2010) Hair depigmentation as an indicator of durable response to CTLA-4 therapy. J Clin Oncol 28(suppl):7s.8571

    Google Scholar 

  26. Koukakis G, Efremidou EI, Pitiakoudis M, Liratzopoulos N, Polychronidis AC (2013) Development of primary malignant melanoma during treatment with a TNF-α antagonist for severe Crohn's disease: a case report and review of the hypothetical association between TNF-α blockers and cancer. Drug Des Devel Ther 7:195–199

    Google Scholar 

  27. Mole RH (1953) Whole body irradiation: radiobiology or medicine? Br J Radiol 26:234–241

    Article  CAS  PubMed  Google Scholar 

  28. Hiniker SM, Chen DS, Reddy S, Chang DT, Jones JC, Mollick JA, et al. (2012) A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl Oncol 5(6):404–407

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barker CA, Postow MA (2014) Combinations of radiation therapy and immunotherapy for melanoma: a review of clinical outcomes. Int J Radiat Oncol Biol Phys 88(5):986–997

    Article  PubMed  PubMed Central  Google Scholar 

  30. Okwan-Duodu D, Pollack BP, Lawson D, Khan MK (2015) Role of radiation therapy as immune activator in the era of modern immunotherapy for metastatic malignant melanoma. Am J Clin Oncol 38(1):119–125

    Article  CAS  PubMed  Google Scholar 

  31. Kahana O, Micksche M, Witz IP, Yron I (2002) The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene 21:3969–3977

    Article  CAS  PubMed  Google Scholar 

  32. Scanlan MJ, Gordan JD, Williamson B, et al. (1999) Antigens recognized by autologous antibody in patients with renal-cell carcinoma. Int J Cancer 83:456–464

    Article  CAS  PubMed  Google Scholar 

  33. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059

    Article  CAS  PubMed  Google Scholar 

  34. Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P, et al. (2007) Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ 14(10):1848–1850

    Article  CAS  PubMed  Google Scholar 

  35. Perez CA, Fu A, Onishko H, Hallahan DE, Geng L (2009) Radiation induces an antitumour immune response to mouse melanoma. Int J Radiat Biol 85(12):1126–1136

    Article  CAS  PubMed  Google Scholar 

  36. Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW (2014) Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget 5(2):403–416

    Article  PubMed  PubMed Central  Google Scholar 

  37. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875

    Article  CAS  PubMed  Google Scholar 

  38. Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

  39. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, et al. (2011) The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res 71(7):2488–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lim JY, Gerber SA, Murphy SP, Lord EM (2014) Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8(+) T cells. Cancer Immunol Immunother 63(3):259–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Demaria S, Kawashima N, Yang AM, et al. (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11:728–734

    CAS  PubMed  Google Scholar 

  43. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeng J, See AP, Phallen J, et al. (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harris TJ, Hipkiss EL, Borzillary S, et al. (2008) Radiotherapy augments the immune response to prostate cancer in a time-dependent manner. Prostate 68(12):1319–1329

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zeng J, Harris TJ, Lim M, Drake CG, Tran PT (2013) Immune modulation and stereotactic radiation: improving local and abscopal responses. Biomed Res Int 2013:658126

    PubMed  PubMed Central  Google Scholar 

  47. Dewan MZ, Galloway AE, Kawashima N, Deewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rosenberg SA, Yang JC, Topalian SL, et al. (1994) Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. J Am Med Assoc 271:907–913

    Article  CAS  Google Scholar 

  49. Rosenberg SA, Packard BS, Aebersold PM, et al. (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680

    Article  CAS  PubMed  Google Scholar 

  50. Atkins MB, Lotze MT, Dutcher JP, et al. (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985-1993. J Clin Oncol 17(7):2105–2116

    CAS  PubMed  Google Scholar 

  51. Atkins MB, Kunkel L, Sznol M, Rosenberg SA (2000) High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am 6(suppl 1):S11–S14

    PubMed  Google Scholar 

  52. White RL Jr, Schwartzentruber DJ, Guleria A, MacFarlane MP, White DE, Tucker E, Rosenberg SA (1994) Cardiopulmonary toxicity of treatment with high dose interleukin-2 in 199 consecutive patients with metastatic melanoma or renal cell carcinoma. Cancer 74(12):3212–3222

    Article  PubMed  Google Scholar 

  53. Schwartzentruber DJ (2001) Guidelines for the safe administration of high-dose interleukin-2. J Immunother 24:287–293

    Article  CAS  PubMed  Google Scholar 

  54. Dudley ME, Wunderlich JR, Yang JC, et al. (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dudley ME, Yang JC, Sherry R, et al. (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosenberg SA, Yang JC, Sherry RM, et al. (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Safwat A, Aggerholm N, Roitt I, et al. (2003) Low-dose total body irradiation augments the therapeutic effect of interleukin-2 in a mouse model for metastatic malignant melanoma. J Exp Ther Oncol 3:161–168

    Article  CAS  PubMed  Google Scholar 

  58. Safwat A, Aggerholm N, Roitt I, et al. (2004) Tumour burden and interleukin-2 dose affect the interaction between low-dose total body irradiation and interleukin 2. Eur J Cancer 40:1412–1417

    Article  CAS  PubMed  Google Scholar 

  59. Safwat A, Schmidt H, Bastholdt L, Fode K, Larsen S, Aggerholm N, von der Maase H (2005) A phase II trial of low-dose total body irradiation and subcutaneous interleukin-2 in metastatic melanoma. Radiother Oncol 77(2):143–147

    Article  CAS  PubMed  Google Scholar 

  60. Cameron RB, Spiess PJ, Rosenberg SA (1990) Synergistic antitumor activity of tumor-infiltrating lymphocytes, interleukin 2, and local tumor irradiation: studies on the mechanism of action. J Exp Med 171:249–263

    Article  CAS  PubMed  Google Scholar 

  61. Lange JR, Raubitschek AA, Pockaj BA, et al. (1991) A pilot study of the combination of interleukin-2-based immunotherapy and radiation therapy. J Immunother 1992(12):265–271

    Google Scholar 

  62. Seung SK, Curti BD, Crittenden M, et al. (2012) Phase 1 study of stereotactic body radiotherapy and interleukin-2: tumor and immunological responses. Sci Transl Med (4):137ra174

  63. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH (1996) Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol 14:7–17

    CAS  PubMed  Google Scholar 

  64. Kirkwood JM, Ibrahim JG, Sondak VK, et al. (2000) High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J Clin Oncol 18:2444–2458

    CAS  PubMed  Google Scholar 

  65. Kirkwood JM, Ibrahim JG, Sosman JA, et al. (2001) High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801. J Clin Oncol 19:2370–2380

    CAS  PubMed  Google Scholar 

  66. Mocellin S, Pasquali S, Rossi CR, Nitti D (2010) Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 102:493–501

    Article  CAS  PubMed  Google Scholar 

  67. Dritschilo A, Mossman K, Gray M, et al. (1982) Potentiation of radiation injury by interferon. Am J Clin Oncol 5:79–82

    Article  CAS  PubMed  Google Scholar 

  68. Hazard LJ, Sause WT, Noyes RD (2002) Combined adjuvant radiation and interferon-alpha 2B therapy in high-risk melanoma patients: the potential for increased radiation toxicity. Int J Radiat Oncol Biol Phys 52:796–800

    Article  CAS  PubMed  Google Scholar 

  69. Nguyen NP, Levinson B, Dutta S, et al. (2003) Concurrent interferon-alpha and radiation for head and neck melanoma. Melanoma Res 13:67–71

    Article  CAS  PubMed  Google Scholar 

  70. Conill C, Jorcano S, Domingo-Domenech J, et al. (2007) Toxicity of combined treatment of adjuvant irradiation and interferon alpha2b in high-risk melanoma patients. Melanoma Res 17:304–309

    Article  CAS  PubMed  Google Scholar 

  71. Gyorki DE, Ainslie J, Joon ML, et al. (2004) Concurrent adjuvant radio- therapy and interferon-alpha2b for resected high risk stage III melanoma: a retrospective single centre study. Melanoma Res 14:223–230

    Article  CAS  PubMed  Google Scholar 

  72. Finkelstein SE, Trotti A, Rao N, et al. (2012) The Florida Melanoma Trial I: a prospective multicenter phase I/II trial of postoperative hypo- fractionated adjuvant radiotherapy with concurrent interferon-alfa-2b in the treatment of advanced stage III melanoma with long-term toxicity follow-up. ISRN Immunol 2012:10

    Article  CAS  Google Scholar 

  73. Richtig E, Langmann G, Schlemmer G, et al. (2006) Safety and efficacy of interferon alfa-2b in the adjuvant treatment of uveal melanoma. Ophthalmologe 103:506–511

    Article  CAS  PubMed  Google Scholar 

  74. Lane AM, Egan KM, Harmon D, et al. (2009) Adjuvant interferon therapy for patients with uveal melanoma at high risk of metastasis. Ophthalmology 116:2206–2212

    Article  PubMed  Google Scholar 

  75. Paul E, Muller I, Renner H, et al. (2003) Treatment of locoregional metastases of malignant melanomas with radiotherapy and intralesional beta-interferon injection. Melanoma Res 13:611–617

    Article  PubMed  Google Scholar 

  76. Carreno BM, Bennett F, Chau TA, et al. (2000) CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J Immunol 165:1352–1356

    Article  CAS  PubMed  Google Scholar 

  77. Hodi FS, O’Day SJ, McDermott DF, et al. (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Robert C, Thomas L, Bondarenko I, et al. (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  CAS  PubMed  Google Scholar 

  79. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, Patt D, Chen TT, Berman DM, Wolchok JD (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894

    Article  CAS  PubMed  Google Scholar 

  80. Pilones KA, Kawashima N, Yang AM, et al. (2009) Invariant natural killer T cells regulate breast cancer response to radiation and CTLA-4 blockade. Clin Cancer Res 15:597–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Knisely JP, Yu JB, Flanigan J, et al. (2012) Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J Neurosurg 117:227–233

    Article  PubMed  Google Scholar 

  82. Mathew M, Tam M, Ott PA, et al. (2013) Ipilimumab in melanoma with limited brain metastases treated with stereotactic radiosurgery. Melanoma Res 23:191–195

    Article  CAS  PubMed  Google Scholar 

  83. Kiess AP, Wolchok JD, Barker CA, et al. (2012) Ipilimumab and stereotactic radiosurgery for melanoma brain metastases. Int J Radiat Oncol Biol Phys 84:S115–S116

    Article  Google Scholar 

  84. Muller-Brenne T, Rudolph B, Schmidberger H, et al. (2011) Successful therapy of a cerebral metastasized malignant melanoma by whole-brain radiation and therapy with ipilimumab. J Dtsch Dermatol Ges 9:787–788

    Google Scholar 

  85. Silk AW, Bassetti MF, West BT, et al. (2013) Ipilimumab and radiation therapy for melanoma brain metastases. Cancer Med 2(6):899–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bot I, Blank CU, Brandsma D (2012) Clinical and radiological response of leptomeningeal melanoma after whole brain radiotherapy and ipilimumab. J Neurol 259:1976–1978

    Article  CAS  PubMed  Google Scholar 

  87. Blank C, Brown I, Peterson AC, et al. (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64:1140–1145

    Article  CAS  PubMed  Google Scholar 

  88. Hamid O, Robert C, Daud A, et al. (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Topalian SL, Sznol M, McDermott DF, et al. (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32:1020–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Topalian SL, Hodi FS, Brahmer JR, et al. (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wolchok JD, Kluger H, Callahan MK, et al. (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  Google Scholar 

  92. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, Shaheen M, Ernstoff MS, Minor D, Salama AK, Taylor M, Ott PA, Rollin LM, Horak C, Gagnier P, Wolchok JD, Hodi FS (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372(21):2006–2017

    Article  PubMed  Google Scholar 

  93. Larkin J, Chiarion-Sileni V, Gonzalez R (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–24

    Article  PubMed  CAS  Google Scholar 

  94. Park SS, Dong H, Liu X, Harrington SM, Krco CJ, Grams MP, Mansfield AS, Furutani KM, Olivier KR, Kwon ED (2015) PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res 3(6):610–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, Herati RS, Mansfield KD, Patsch D, Amaravadi RK, Schuchter LM, Ishwaran H, Mick R, Pryma DA, Xu X, Feldman MD, Gangadhar TC, Hahn SM, Wherry EJ, Vonderheide RH, Minn AJ (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547):373–377

    Article  CAS  PubMed  Google Scholar 

  96. Chandra RA, Wilhite TJ, Balboni TA, Alexander BM, Spektor A, Ott PA, Ng AK, Hodi FS, Schoenfeld JD (2015) A systematic evaluation of abscopal responses following radiotherapy in patients with metastatic melanoma treated with ipilimumab. Oncoimmunology 4(11):e1046028eCollection 2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Tang C, Wang X, Soh H, Seyedin S, Cortez MA, Krishnan S, Massarelli E, Hong D, Naing A, Diab A, Gomez D, Ye H, Heymach J, Komaki R, Allison JP, Sharma P, Welsh JW (2014) Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol Res 2(9):831–838

    Article  CAS  PubMed  Google Scholar 

  98. Pilones KA, Vanpouille-Box C, Demaria S (2015) Combination of radiotherapy and immune checkpoint inhibitors. Semin Radiat Oncol 25(1):28–33

    Article  PubMed  Google Scholar 

  99. Patel KR, Lawson DH, Kudchadkar RR, Carthon BC, Oliver DE, Okwan-Duodu D, Ahmed R, Khan MK (2015) Two heads better than one? Ipilimumab immunotherapy and radiation therapy for melanoma brain metastases. Neuro-Oncology 17(10):1312–1321

    Article  PubMed  Google Scholar 

  100. Crittenden M, Kohrt H, Levy R, Jones J, Camphausen K, Dicker A, Demaria S, Formenti S (2015) Current clinical trials testing combinations of immunotherapy and radiation. Semin Radiat Oncol 25(1):54–64

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yang JC, Rosenberg SA (1988) Current approaches to the adoptive immunotherapy of cancer. Adv Exp Med Biol 233:459–467

    Article  CAS  PubMed  Google Scholar 

  102. Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21(2):233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O, Hershkovitz L, et al. (2010) Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res 16(9):2646–2655

    Article  CAS  PubMed  Google Scholar 

  104. Radvanyi LG, Bernatchez C, Zhang M, Miller P, Glass M, Papadopoulos N, et al. (2010) Adoptive T-cell therapy for metastatic melanoma: the MD Anderson experience. J Immunother 33(8):863

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Welsh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics statement

There were no human or animal experiments that had to be approved by an ethics committee for this paper.

Statement of informed consent

Informed consent was not applicable since the manuscript does not contain any patient data.

Funding source(s)

No funding support is associated with this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stang, K., Silva, S., Block, A.M. et al. The integration of radiation therapy and immunotherapy in melanoma management. J Radiat Oncol 5, 131–142 (2016). https://doi.org/10.1007/s13566-016-0256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13566-016-0256-5

Keywords

Navigation