Skip to main content
Log in

MicroRNAs as regulators of adventitious root development

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are post-transcriptional regulators of growth and development in both plants and animals. In plants, the root system plays the essential role of anchoring plants to the soil and allowing the uptake of nutrients and water. Adventitious rooting is an essential step in the vegetative propagation of economically important horticultural and woody species. It facilitates clonal propagation and rapid fixation of superior genotypes prior to their introduction into production or breeding programs. Severe economic losses occur due to limitations in understanding the molecular pathways involved in establishing and maintaining adventitious root growth. In this review, we describe recent advances in the identification of miRNAs involved in adventitious root growth, focusing on the model plant Arabidopsis and its relevance to hard-to-root woody species. We summarise the current knowledge on the interactions between light, auxin, Auxin Response Factors (ARFs) and microRNAs that combine to influence, or potentially influence adventitious root production. A greater understanding of these processes will be crucial for the design and manipulation of plant biochemistry to obtain commercially viable rootstocks and clones of many important woody species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abel S, Oeller PW, Theologis A (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci U S A 91(1):326–330. doi:10.1073/Pnas.91.1.326

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97(5):883–893. doi:10.1093/aob/mcl027

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9(3):277–279

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci U S A 97(26):14819–14824

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363. doi:10.1038/nature02874

    PubMed  CAS  Google Scholar 

  • Blakesley D, Weston GD, Hall JF (1991) The role of endogenous auxin in root initiation. Plant Growth Regul 10(4):341–353. doi:10.1007/BF00024593

    CAS  Google Scholar 

  • Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17(1):170–180. doi:10.1093/emboj/17.1.170

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci U S A 101(31):11511–11516. doi:10.1073/pnas.0404025101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chen Q, Westfall CS, Hicks LM, Wang S, Jez JM (2010) Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase. J Biol Chem 285(39):29780–29786. doi:10.1074/jbc.M110.146431

    PubMed  CAS  PubMed Central  Google Scholar 

  • Correa LD, Fett-Neto AG (2004) Effects of temperature on adventitious root development in microcuttings of Eucalyptus saligna Smith and Eucalyptus globulus Labill. J Therm Biol 29(6):315–324. doi:10.1016/J.Jtherbio.2004.05.006

    Google Scholar 

  • Correa LD, Troleis J, Mastroberti AA, Mariath JEA, Fett-Neto AG (2012) Distinct modes of adventitious rooting in Arabidopsis thaliana. Plant Biol 14(1):100–109. doi:10.1111/j.1438-8677.2011.00468.x

    Google Scholar 

  • De Klerk GJ, Keppel M, Terbrugge J, Meekes H (1995) Timing of the phases in adventitious root-formation in apple microcuttings. J Exp Bot 46(289):965–972

    Google Scholar 

  • De Klerk GJ, Van der Krieken W, De Jong JC (1999) Review–the formation of adventitious roots: new concepts, new possibilities. In Vitro Cell Dev-Plant 35(3):189–199

    Google Scholar 

  • Delarue M, Prinsen E, Onckelen VH, Caboche M, Bellini C (1998) Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14:603–611. doi:10.1046/j.1365-313X.1998.00163.x

    PubMed  CAS  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21(9):R365–R373. doi:10.1016/j.cub.2011.03.013

    PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435(7041):441–445. doi:10.1038/nature03543

    PubMed  CAS  Google Scholar 

  • Doyle SM, Robert S (2014) Using a reverse genetics approach to investigate small-molecule activity. Methods Mol Biol 1056:51–62. doi:10.1007/978-1-62703-592-7_6

    PubMed  Google Scholar 

  • Esau K (1977) Anatomy of seed plants, 2nd edn. Wiley, New York

    Google Scholar 

  • Falasca G, Altamura M (2003) Histological analysis of adventitious rooting in Arabidopsis thaliana (L.) Heynh seedlings. Plant Biosyst 137(3):265–273. doi:10.1080/11263500312331351511

    Google Scholar 

  • Fett-Neto AG, Fett JP, Veira Goulart LW, Pasquali G, Termignoni RR, Ferreira AG (2001) Distinct effects of auxin and light on adventitious root development in Eucalyptus saligna and Eucalyptus globulus. Tree Physiol 21(7):457–464

    PubMed  CAS  Google Scholar 

  • Fogaca CM, Fett-Neto AG (2005) Role of auxin and its modulators in the adventitious rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regul 45(1):1–10. doi:10.1007/S10725-004-6547-7

    CAS  Google Scholar 

  • Gao Z, Shi T, Luo X, Zhang Z, Zhuang W, Wang L (2012) High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot. BMC Genomics 13:371. doi:10.1186/1471-2164-13-371

    PubMed  CAS  PubMed Central  Google Scholar 

  • Geiss G, Gutierrez L, Bellini C (2009) Adventitious root formation: new insights and perspectives. In: Beeckman T (ed) Annual plant reviews. Vol 37. Wiley-Blackwell, Oxford

    Google Scholar 

  • Goldfarb B, Hackett WP, Furnier GR, Mohn CA, Plietzsch A (1998) Adventitious root initiation in hypocotyl and epicotyl cuttings of eastern white pine (Pinus strobus) seedlings. Physiol Plant 102(4):513–522. doi:10.1034/j.1399-3054.1998.1020405.x

    CAS  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414(6861):271–276. doi:10.1038/35104500

    PubMed  CAS  Google Scholar 

  • Greenwood MS, Weir RJ (1995) Genetic variation in rooting ability of loblolly pine cuttings: effects of auxin and family on rooting by hypocotyl cuttings. Tree Physiol 15(1):41–45

    PubMed  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10(5):453–460. doi:10.1016/j.pbi.2007.08.014

    PubMed  CAS  Google Scholar 

  • Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17(5):1376–1386. doi:10.1105/tpc.105.030841

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gursanscky NR, Carroll BJ (2012) Mechanism of small RNA movement. Springer, New York, pp 99–130

    Google Scholar 

  • Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and MicroRNA abundance. Plant Cell 21(10):3119–3132. doi:10.1105/tpc.108.064758

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gutierrez L, Mongelard G, Flokovác K, Păcurard DI, Nováka O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24(6):2515–2527. doi:10.1105/tpc.112.099119

    PubMed  CAS  PubMed Central  Google Scholar 

  • Haissig BE, Davis TD, Riemenschneider DE (2006) Researching the controls of adventitious rooting. Physiol Plant 84(2):310–317

    Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

  • Huang T, Lopez-Giraldez F, Townsend JP, Irish VF (2012) RBE controls microRNA164 expression to effect floral organogenesis. Development 139(12):2161–2169. doi:10.1242/dev.075069

    PubMed  CAS  Google Scholar 

  • Jeong DH, Thatcher SR, Brown RS, Zhai J, Park S, Rymarquis LA, Meyers BC, Green PJ (2013) Comprehensive investigation of microRNAs enhanced by analysis of sequence variants, expression patterns, ARGONAUTE loading, and target cleavage. Plant Physiol 162(3):1225–1245. doi:10.1104/pp. 113.219873

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kalluri UC, Difazio SP, Brunner AM, Tuskan GA (2007) Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol 7:59–73. doi:10.1186/1471-2229-7-59

    PubMed  PubMed Central  Google Scholar 

  • Kepinski S, Leyser O (2004) Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc Natl Acad Sci U S A 101(33):12381–12386. doi:10.1073/pnas.0402868101

    PubMed  CAS  PubMed Central  Google Scholar 

  • Khan G, Declerck M, Sorin C, Hartmann C, Crespi M, Lelandais-Brière C (2011) MicroRNAs as regulators of root development and architecture. Plant Mol Biol 77(1–2):47–58. doi:10.1007/s11103-011-9793-x

    PubMed  CAS  Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta Gene Regul Mech 1819(2):137–148. doi:10.1016/j.bbagrm.2011.05.001

    CAS  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385. doi:10.1038/nrm1644

    PubMed  CAS  Google Scholar 

  • King JJ, Stimart DP (1998) Genetic analysis of variation for auxin-induced adventitious root formation among eighteen ecotypes of Arabidopsis thaliana L. Heynh. J Hered 89(6):481–487

    PubMed  CAS  Google Scholar 

  • Kuroha T, Satoh S (2007) Involvement of cytokinins in adventitious and lateral root formation. Plant Roots 1:27–33. doi:10.3117/plantroot.1.27

    CAS  Google Scholar 

  • Lee MH, Kim B, Song SK, Heo JO, Yu NI, Lee SA, Kim M, Kim DG, Sohn SO, Lim CE, Chang KS, Lee MM, Lim J (2008) Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol Biol 67(6):659–670. doi:10.1007/s11103-008-9345-1

    PubMed  CAS  Google Scholar 

  • Li YH, Zou MH, Feng BH, Huang X, Zhang Z, Sun GM (2012) Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments. Plant Physiol Biochem 55:33–42. doi:10.1016/j.plaphy.2012.03.012

    PubMed  CAS  Google Scholar 

  • Liu X, Cohen JD, Gardner G (2011) Low-fluence red light increases the transport and biosynthesis of auxin. Plant Physiol 157(2):891–904. doi:10.1104/pp. 111.181388

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140(5):943–950. doi:10.1242/dev.086363

    PubMed  CAS  Google Scholar 

  • Lombardi-Crestana S, da Silva Azevedo M, e Silva GF, Pino LE, Appezzato-da-Glória B, Figueira A, Nogueira FT, Peres LE (2012) The tomato (Solanum lycopersicum cv. Micro-Tom) natural genetic variation Rg1 and the DELLA mutant procera control the competence necessary to form adventitious roots and shoots. J Exp Bot 63(15):5689–5703. doi:10.1093/jxb/ers221

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lorbiecke R, Sauter M (1999) Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol 119(1):21–30

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12(12):2351–2366

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lucas M, Swarup R, Paponov IA, Swarup K, Casimiro I, Lake D, Peret B, Zappala S, Mairhofer S, Whitworth M, Wang J, Ljung K, Marchant A, Sandberg G, Holdsworth MJ, Palme K, Pridmore T, Mooney S, Bennett MJ (2011) Short-root regulates primary, lateral, and adventitious root development in Arabidopsis. Plant Physiol 155(1):384–398. doi:10.1104/pp. 110.165126

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ludwig-Müller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56(418):2095–2105

    PubMed  Google Scholar 

  • Luo Y, Guo Z, Li L (2013) Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 380(2):133–144. doi:10.1016/j.ydbio.2013.05.009

    PubMed  CAS  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14(12):1035–1046. doi:10.1016/j.cub.2004.06.022

    PubMed  CAS  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell Online 17(5):1360–1375

    CAS  Google Scholar 

  • Maraschin Fdos S, Memelink J, Offringa R (2009) Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J 59(1):100–109. doi:10.1111/j.1365-313X.2009.03854.x

    PubMed  Google Scholar 

  • Maynard BK, Bassuk NL (1987) Stockplant etiolation and blanching of woody plants prior to cutting propagation. J Am Soc Hortic Sci 112(2):273–276

    Google Scholar 

  • Meng Y, Chen D, Ma X, Mao C, Cao J, Wu P, Chen M (2010) Mechanisms of microRNA-mediated auxin signaling inferred from the rice mutant osaxr. Plant Signal Behav 5(3):252–254

    PubMed  CAS  PubMed Central  Google Scholar 

  • Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447(7148):1126–1129. doi:10.1038/nature05903

    PubMed  CAS  Google Scholar 

  • Nakazawa M, Yabe N, Ichikawa T, Yamamoto YY, Yoshizumi T, Hasunuma K, Matsui M (2001) DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J 25(2):213–221. doi:10.1111/j.1365-313X.2001.00957.x

    PubMed  CAS  Google Scholar 

  • Nilsen TW (2013) Splinted ligation method to detect small RNAs. Cold Spring Harb Protoc 2013(1) doi:10.1101/pdb.prot072611

  • Nordstrom AC, Jacobs FA, Eliasson L (1991) Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol 96(3):856–861

    PubMed  CAS  PubMed Central  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955):257–263. doi:10.1038/nature01958

    PubMed  CAS  Google Scholar 

  • Pandolfini T, Molesini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12(8):327–329. doi:10.1016/j.tplants.2007.06.011

    PubMed  CAS  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89. doi:10.1038/35040556

    PubMed  CAS  Google Scholar 

  • Pop TI, Pamfil D, Bellini C (2011) Auxin control in the formation of adventitious roots. Not Bot Hort Agrobot Cluj Nap 39:307–316

    CAS  Google Scholar 

  • Ranjit P, Archana G, Sowjanya G, Vennela M, Vineela G (2013) Identification of miRNAs in Eucalyptus globulus plant by computational methods. Int J Pharm Sci Invent 2(5):70–74

    CAS  Google Scholar 

  • Rasmussen A, Hunt MA (2010) Ageing delays the cellular stages of adventitious root formation in pine. Aust For 73(1):41–46

    Google Scholar 

  • Rasmussen A, Beveridge CA, Geelen D (2012a) Inhibition of strigolactones promotes adventitious root formation. Plant Signal Behav 7(6):0–3

    Google Scholar 

  • Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, Beveridge CA (2012b) Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiol 158(4):1976–1987

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16(13):1616–1626. doi:10.1101/gad.1004402

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520. doi:10.1016/s0092-8674(02)00863-2

    PubMed  CAS  Google Scholar 

  • Rigal A, Yordanov YS, Perrone I, Karlberg A, Tisserant E, Bellini C, Busov VB, Martin F, Kohler A, Bhalerao R, Legué V (2012) The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiol 160(4):1996–2006. doi:10.1104/pp. 112.204453

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16(5):258–264. doi:10.1016/j.tplants.2011.03.001

    PubMed  CAS  Google Scholar 

  • Salmon J, Ramos J, Callis J (2008) Degradation of the auxin response factor ARF1. Plant J 54(1):118–128. doi:10.1111/j.1365-313X.2007.03396.x

    PubMed  CAS  Google Scholar 

  • Sánchez C, Vielba JM, Ferro E, Covelo G, Solé A, Abarca D, de Mier BS, Díaz-Sala C (2007) Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species. Tree Physiol 27(10):1459–1470

    PubMed  Google Scholar 

  • Santos Macedo E, Cardoso HG, Hernández A, Peixe AA, Polidoros A, Ferreira A, Cordeiro A, Arnholdt-Schmitt B (2009) Physiologic responses and gene diversity indicate olive alternative oxidase as a potential source for markers involved in efficient adventitious root induction. Physiol Plant 137(4):532–552. doi:10.1111/j.1399-3054.2009.01302.x

    PubMed  Google Scholar 

  • Sassi M, Wang J, Ruberti I, Vernoux T, Xu J (2013) Shedding light on auxin movement: light-regulation of polar auxin transport in the photocontrol of plant development. Plant Signal Behav 8(3):e23355. doi:10.4161/psb.23355

    PubMed  PubMed Central  Google Scholar 

  • Shuai P, Liang D, Zhang Z, Yin W, Xia X (2013) Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis. BMC Genomics 14:233. doi:10.1186/1471-2164-14-233

    PubMed  CAS  PubMed Central  Google Scholar 

  • Simon S, Petrášek J (2011) Why plants need more than one type of auxin. Plant Sci 180(3):454–460. doi:10.1016/j.plantsci.2010.12.007

    PubMed  CAS  Google Scholar 

  • Smolka A, Welander M, Olsson P, Holefors A, Zhu LH (2009) Involvement of the ARRO-1 gene in adventitious root formation in apple. Plant Sci 177(6):710–715. doi:10.1016/J.Plantsci.2009.09.009

    CAS  Google Scholar 

  • Solé A, Sánchez C, Vielba JM, Valladares S, Abarca D, Díaz-Sala C (2008) Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene. Tree Physiol 28(11):1629–1639

    PubMed  Google Scholar 

  • Song CN, Fang JG, Li XY, Liu H, Chao CT (2009) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230(4):671–685. doi:10.1007/s00425-009-0971-x

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17(5):1343–1359. doi:10.1105/tpc.105.031625

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C (2006) Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol 140(1):349–364. doi:10.1104/pp. 105.067868

    PubMed  CAS  PubMed Central  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17(2):616–627. doi:10.1105/tpc.104.026690

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sukumar P, Maloney GS, Muday GK (2013) Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in arabidopsis. Plant Physiol 162(3):1392–1405. doi:10.1104/pp. 113.217174

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203. doi:10.1016/j.tplants.2012.01.010

    PubMed  CAS  Google Scholar 

  • Tian CE, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T, Yamamoto KT (2004) Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant J 40(3):333–343. doi:10.1111/j.1365-313X.2004.02220.x

    PubMed  CAS  Google Scholar 

  • Tian H, Jia Y, Niu T, Yu Q, Ding Z (2014) The key players of the primary root growth and development also function in lateral roots in Arabidopsis. Plant Cell Rep 33:745–753

    PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15(2):533–543. doi:10.1105/tpc.008417

    PubMed  CAS  PubMed Central  Google Scholar 

  • Trupiano D, Yordanov Y, Regan S, Meilan R, Tschaplinski T, Scippa GS, Busov V (2013) Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus. Planta 238(2):271–282. doi:10.1007/s00425-013-1890-1894

    PubMed  CAS  Google Scholar 

  • Varkonyi-Gasic E, Gould N, Sandanayaka M, Sutherland P, MacDiarmid RM (2010) Characterisation of microRNAs from apple (Malus domestica ‘Royal Gala’) vascular tissue and phloem sap. BMC Plant Biol 10:159. doi:10.1186/1471-2229-10-159

    PubMed  PubMed Central  Google Scholar 

  • Vaucheret H (2008) Plant argonautes. Trends Plant Sci 13(7):350–358. doi:10.1016/j.tplants.2008.04.007

    PubMed  CAS  Google Scholar 

  • Verstraeten I, Beeckman T, Geelen D (2013) Adventitious root induction in Arabidopsis thaliana as a model for in vitro root organogenesis. Methods Mol Biol 959:159–175. doi:10.1007/978-1-62703-221-6_10

    PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687. doi:10.1016/j.cell.2009.01.046

    PubMed  CAS  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17(8):2204–2216. doi:10.1105/tpc.105.033076

    PubMed  CAS  PubMed Central  Google Scholar 

  • Westfall CS, Herrmann J, Chen Q, Wang S, Jez JM (2010) Modulating plant hormones by enzyme action: the GH3 family of acyl acid amido synthetases. Plant Signal Behav 5(12):1607–1612

    PubMed  CAS  PubMed Central  Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234. doi:10.1038/ncb0309-228

    PubMed  CAS  Google Scholar 

  • Wynne J, McDonald MS (2002) Adventitious root formation in woody plant tissue: the influence of light and indole-3-butyric acid (IBA) on adventitious root induction in Betula pendula. In Vitro Cell Dev Biol Plant 38(2):210–212. doi:10.2307/20065036

    CAS  Google Scholar 

  • Xia R, Zhu H, An YQ, Beers EP, Liu Z (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13(6):R47. doi:10.1186/gb-2012-13-6-r47

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu M, Zhu L, Shou H, Wu P (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46(10):1674–1681. doi:10.1093/pcp/pci183

    PubMed  CAS  Google Scholar 

  • Yang JH, Han SJ, Yoon EK, Lee WS (2006) Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res 34(6):1892–1899. doi:10.1093/nar/gkl118

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yang F, Song Y, Yang H, Liu Z, Zhu G, Yang Y (2014) An auxin-responsive endogenous peptide regulates root development in Arabidopsis. J Integr Plant Biol. doi:10.1111/jipb.12178

    Google Scholar 

  • You CX, Zhao Q, Wang XF, Xie XB, Feng XM, Zhao LL, Shu HR, Hao YJ (2014) A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple. Plant Biotechnol J 12(2):183–192. doi:10.1111/pbi.12125

    PubMed  CAS  Google Scholar 

  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46(2):243–259

    PubMed  CAS  Google Scholar 

  • Zobel RW (1986) Rhizogenetics (root genetics) of vegetable crops. Hortscience 21(4):956–959

    Google Scholar 

Download references

Acknowledgment

We would like to thank Graham Anderson, proprietor of Anderson’s Avocado Nursery (Duranbah, NSW), for supporting our research on adventitious rooting in avocado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena Mitter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gleeson, M., Constantin, M., Carroll, B.J. et al. MicroRNAs as regulators of adventitious root development. J. Plant Biochem. Biotechnol. 23, 339–347 (2014). https://doi.org/10.1007/s13562-014-0269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-014-0269-3

Keywords

Navigation