Skip to main content
Log in

Engineering of betaine biosynthesis and transport for abiotic stress tolerance in plants

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Drought and salinity are the major factors that decrease crop yield. Organisms thriving in osmotic stress environments need adaptive mechanisms for adjusting their intracellular environment to external osmotic stress conditions. One such mechanism, to prevent water loss from the cells is to accumulate large amounts of low molecular weight organic compatible solutes such as proline, betaine and polyols to balance internal osmolarity of the cells. Accumulation of compatible solutes can be achieved by enhanced synthesis and/or reduced catabolism. Certain plants synthesize betaine in chloroplasts via a two-step oxidation of choline and betaine accumulation is associated with enhanced stress tolerance. Many important crop plants have low levels of betaine or none at all. Hence, betaine biosynthetic pathway is a target for metabolic engineering to enhance stress tolerance in crops. Introduction of betaine synthesis pathway into betaine non-accumulating plants has often improved stress tolerance. However, betaine levels of the engineered plants were generally low. To further enhance the betaine accumulation levels, we need to diagnose factors limitng betaine accumulation in engineered plants. Here we discuss recent progress on metabolic engineering of choline precursors for abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Ap:

Aphanothece halophytica

BADH:

Betaine aldehyde dehydrogenase

BetT:

Betaine transporter

CCCP:

Carbonylcyanide m-chlorophenylhydrazone

CDH:

Choline dehydrogenase

CMO:

Choline monooxygenase

COX:

Choline oxidase

DMSP:

Dimethylsulfoniopropionate

DMT:

Dimethylglycine methyltransferase

GSMT:

Glycine-sarcosine methyltransferase

PEAMT:

Phosphoethanolamine N-methyltransferase

PGDH:

3-phosphoglycerate dehydrogenase

ProT:

Proline transporter

SDC:

Serine decarboxylase

SHMT:

Serine hydroxymethyltransferase

References

  • Alia KY, Sakamoto A, Nonaka H, Hayashi H, Saradhi PP, Chen THH, Murata N (1999) Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol 40:279–288

    Article  PubMed  CAS  Google Scholar 

  • Bhuiyan NH, Hamada A, Yamada N, Rai V, Hibino T, Takabe T (2007) Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor. J Exp Bot 58:4203–4212

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T (2008) Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiol Plant 134:22–30

    Article  PubMed  CAS  Google Scholar 

  • Hibino T, Waditee R, Araki E, Ishikawa H, Aoki K, Tanaka Y, Takabe T (2002) Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. J Biol Chem 277:41352–41360

    Article  PubMed  CAS  Google Scholar 

  • Holmstrom KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51:177–185

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    Article  PubMed  CAS  Google Scholar 

  • Ikuta S, Imamura S, Misaki H, Horiuti Y (1977) Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem 82:1741–1749

    PubMed  CAS  Google Scholar 

  • Lamark T, Røkenes TP, McDougall J, Strøm AR (1996) The complex bet promoters of Escherichia coli: regulation by oxygen (ArcA), choline (BetI), and osmotic stress. J Bacteriol 178:1655–1662

    PubMed  CAS  Google Scholar 

  • McNeil SD, Nuccio ML, Rhodes D, Shachar-Hill Y, Hanson AD (2000a) Radiotracer and computer modeling evidence that phospho-base methylation is the main route of choline synthesis in tobacco. Plant Physiol 123:371–380

    Article  PubMed  CAS  Google Scholar 

  • McNeil SD, Rhodes D, Russell BL, Nuccio ML, Shachar-Hill Y, Hanson AD (2000b) Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco. Plant Physiol 124:153–162

    Article  PubMed  CAS  Google Scholar 

  • McNeil SD, Nuccio ML, Ziemak MJ, Hanson AD (2001) Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proc Natl Acad Sci U S A 98:10001–10005

    Article  PubMed  CAS  Google Scholar 

  • Mitsuya S, Yokota Y, Fujiwara T, Mori N, Takabe T (2009) OsBADH1 is possibly involved in acetaldehyde oxidation in rice plant peroxisomes. FEBS Lett 583:3625–3629

    Article  PubMed  CAS  Google Scholar 

  • Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD (1998) The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J 16:487–496

    Article  PubMed  CAS  Google Scholar 

  • Nuccio ML, Ziemak MJ, Henry SA, Weretilnyk EA, Hanson AD (2000) cDNA cloning of phosphoethanolamine N-methyltransferase from spinach by complementation in Schizosaccharomyces pombe and characterization of the recombinant enzyme. J Biol Chem 275:14095–14101

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, McCue KF, Gage DA, Hanson AD (1994) Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta 193:155–162

    Article  PubMed  CAS  Google Scholar 

  • Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P, Golbeck JH, Hanson AD (1997) Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci U S A 94:3454–3458

    Article  PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rontein D, Nishida I, Tashiro G, Yoshioka K, Wu WI, Voelker DR, Hanson AD (2001) Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme. J Biol Chem 276:35523–35529

    Article  PubMed  CAS  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    Article  PubMed  CAS  Google Scholar 

  • Rontein D, Rhodes D, Hanson AD (2003) Evidence from engineering that decarboxylation of free serine is the major source of ethanolamine moieties in plants. Plant Cell Physiol 44:1185–1191

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125:180–188

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata A, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Valverde R, Alia CTHH, Murata N (2000) Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant J 22:449–453

    Article  PubMed  CAS  Google Scholar 

  • Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A 103:13997–14002

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  Google Scholar 

  • Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Hayakawa S, Suzuki S, Futsuhara Y, Kawamitsu Y, Takabe T, Takabe T (2002) Functional characterization of betaine/proline transporters in betaine-accumulating mangrove. J Biol Chem 277:18373–18382

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Tanaka Y, Aoki K, Hibino T, Jikuya H, Takano J, Takabe T, Takabe T (2003) Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J Biol Chem 278:4932–4942

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Bhuiyan MNH, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high level betaine and improved abiotic stress tolerance. Proc Natl Acad Sci U S A 102:1318–1323

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Bhuiyan NH, Hirata E, Hibino T, Tanaka Y, Shikata M, Takabe T (2007) Metabolic engineering for betaine accumulation in microbes and plants. J Biol Chem 282:34185–34193

    Article  PubMed  CAS  Google Scholar 

  • Weretilnyk EA, Smith DD, Wilch GA, Summers PS (1995) Enzymes of choline synthesis in spinach—response of phospho-base N-methyltransferase activities to light and salinity. Plant Physiol 109:1085–1091

    PubMed  CAS  Google Scholar 

  • Yamada N, Promden W, Yamane K, Tamagake H, Hibino T, Tanaka Y, Takabe T (2009) Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet-importance of long-distance translocation of betaine under normal and salt-stressed conditions. J Plant Physiol 166:2058–2070

    Article  PubMed  CAS  Google Scholar 

  • Yamada N, Sakakibara S, Tsutsumi K, Waditee R, Tanaka Y, Takabe T (2011) Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet. J Plant Physiol 168:1609–1616

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan and the International Center for Green Biotechnology of Meijo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhiro Takabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takabe, T. Engineering of betaine biosynthesis and transport for abiotic stress tolerance in plants. J. Plant Biochem. Biotechnol. 21 (Suppl 1), 58–62 (2012). https://doi.org/10.1007/s13562-012-0143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-012-0143-0

Keywords

Navigation