Skip to main content

Engineering Glycine Betaine Biosynthesis in Alleviating Abiotic Stress Effects in Plants

  • Chapter
  • First Online:
Compatible Solutes Engineering for Crop Plants Facing Climate Change

Abstract

The severe impact of climate change on crop production is already evident; there are strong chances of further changes occurring. Therefore, there is an urgent need to address agricultural adaptation more coherently. Adapting agriculture to the increasing scale of climate risks will ensure food security and sustainability. An increase in intensity and frequency of temperature extremes such as heat and cold along with other abiotic stresses such as salinity and drought are all manifestations of a global environmental change. Owing to their sessile nature, plants have developed several strategies to adapt to the adverse effects of abiotic stresses, synthesis, and build-up of osmoprotectants being one of them. Osmoprotectants are soluble organic compounds compatible with the cellular metabolism and hence are also known as compatible solutes. Among the various compatible solutes, Glycine betaine (GB) is most effective in imparting abiotic stress tolerance to plants. There is enough evidence to suggest the protective role of GB owing to its versatility and ability to accumulate under unfavourable conditions. GB, however, does not accumulate in many crop plants such as rice, tobacco, etc. Tailoring the GB biosynthetic pathway has thus been one of most promising strategies in reducing susceptibility of such crops to abiotic stresses. A number of crop plants have been engineered since then with an objective to increase the accumulation of GB to acquire improved stress tolerance. In this chapter, we shall discuss about the role of GB in ameliorating stress tolerance in plants, major breakthroughs in engineering its pathway, magnitude and mechanism of protective effects, challenges faced, strategies to overcome limitations and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

AREB/ABF:

ABA responsive element binding

CAT:

Catalase

DMSP:

Dimethylsulfoniopropionate

DREB:

Dehydration Responsive Element Binding

FAO:

Food and Agricultural Organisation

FBPase:

Fructose 1,6-bisphosphatase

GB:

Glycine betaine

H2O2:

Hydrogen peroxide

HK:

Histidine Kinases

MAPK:

Mitogen Activated Protein kinase

MDA:

Malondialdehyde

NAC:

NAM/ATAF/CUC

NaCl:

Sodium chloride

NADP:

Nicotinamide adenine dinucleotide phosphate

NT:

Non-Treated

PSII:

Photosystem II

ROS:

Reactive Oxygen Species

Rubisco:

Ribulose-1,5-biphosphate Carboxylase/Oxygenase

SOD:

Superoxide dismutase

T-DNA:

Transfer DNA

ZF-HD:

Zinc finger Homeodomain

References

  • Ahmad R, Kim MD, Back KH, Kim HS, Lee HS, Kwon SY, Murata N, Chung WI, Kwak SS (2008) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep 27:687–698

    Article  PubMed  CAS  Google Scholar 

  • Ahmad R, Hussain J, Jamil M, Kim MD, Kwak SS, Shah MM, El-Hendawy SE, Al-Suhaibani NA, Shafiq-UrRehman (2014) Glycinebetaine synthesizing transgenic potato plants exhibit enhanced tolerance to salt and cold stresses. Pak J Bot 46:1987–1993

    Google Scholar 

  • Ahmed N, Zhang Y, Li K, Zhou Y, Zhang M (2019) Exogenous application of glycinebetaine improved water use efficiency in winter wheat (Triticum aestivum L.) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions. The Crop J 7:635–650

    Article  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patrón M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010a) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas JC, Bitrián M, Tiburcio AF, Altabella T (2010b) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous arginine decarboxylase 2 gene. Plant PhysiolBiochem 48:547–552

    Google Scholar 

  • Alia HH, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16:155–161

    Article  PubMed  CAS  Google Scholar 

  • Alia KY, Sakamoto A, Nonaka H, Hayashi H, Saradhi PP, Chen TH, Murata N (1999) Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol 40:279–288

    Article  PubMed  CAS  Google Scholar 

  • Allard F, Houde M, Krol M, Ivanov A, Huner NPA, Sarhan F (1998) Betaine improves freezing tolerance in wheat. Plant Cell Physiol 39:1194–1202

    Article  CAS  Google Scholar 

  • Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P (2017) Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front Plant Sci 7:2035

    Article  PubMed  PubMed Central  Google Scholar 

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling. Plant Physiol 136:3649–3659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boggess SF, Koeppe DE (1978) Oxidation of proline by plant mitochondria. Plant Physiol 62:22–25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen T, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20

    Article  PubMed  CAS  Google Scholar 

  • Cheng YJ, Deng XP, Kwak SS, Chen W, Eneji AE (2013) Enhanced tolerance of transgenic potato plants expressing choline oxidase in chloroplasts against water stress. Bot Stud 54:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colmer TD, Epstein E, Dvorak J (1995) Differential solute regulation in leaf blades of various ages in salt-sensitive wheat anda salt-tolerant wheat 3 Lophopyrumelongatum(Host) A. Love amphiploid. Plant Physiol 108:1715–1724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cromwell BT, Rennie SD (1953) The biosynthesis and metabolism of betaines in plants. Biochem J 55:189–192

    Article  PubMed Central  CAS  Google Scholar 

  • Crowe J H (2007) Trehalose as a “chemical chaperone”: fact and fantasy. Adv. Exp. Med Biol 594:143–158

    Google Scholar 

  • Cuin TA, Shabala S (2007) Compatible solutes reduce ROSinduced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    Article  PubMed  CAS  Google Scholar 

  • Das KC, Misra HP (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262:127–133

    Article  PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Dutta T, Neelapu NRR, Wani S, Surekha C (2019) Role and Regulation of Osmolytes as Signaling Molecules to Abiotic Stress Tolerance. In; Plant Signal. Mol, Khan M I R, Reddy P S, Ferrante A & Khan N A, Ed.; Woodhead publishing, pp 459–477

    Google Scholar 

  • Di H, Tian Y, Zu H, et al (2015) Enhanced salinity tolerance in transgenic maize plants expressing a BADH gene from Atriplex micrantha. Euphytica 206:775–783

    Google Scholar 

  • Einset J, Nielsen E, Connolly EL, Bones A, Sparstad T, Winge P, Zhu JK (2007) Membrane-trafficking RabA4c involved in the effect of glycine betaine on recovery from chilling stress in Arabidopsis. Physiol Plant 130:511–518

    Article  CAS  Google Scholar 

  • Elthon TE, Stewart CR (1981) Sub-mitochondrial location and electron transport characteristics of enzymes involved in proline oxidation. Plant Physiol 67:780–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    Article  CAS  Google Scholar 

  • Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7:e37344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fitzgerald TL, Waters DLE, Henry RJ (2009) Betaine aldehyde dehydrogenase in plants. Plant Biol 11:119–130

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Sakamoto A, Miura K, Murata N, Sugiura A, Tao R (2000) Transformation of Japanese persimmon (Diospyros kakiThunb.) with a bacterial gene for choline oxidase. Mol. Breed 6:501–510

    Article  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YC, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 51:26–33

    Article  Google Scholar 

  • Goddijn OJM, Van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319

    Google Scholar 

  • Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen RWHH, De Graaf PTHM, Poels J, Van Dun K, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190

    Google Scholar 

  • Grennan AK (2007). The role of trehalose biosynthesis in plants. Plant physiol 144(1):3–5

    Google Scholar 

  • Han KH, Hwang CH (2003) Salt tolerance enhanced by transformation of a P5CS gene in carrot. J Plant Biotechnol 5:149–153

    Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Harinasult P, Tsutsui K, Takabe T, Nomura M, Takabe T, Kishitani S (1996) Exogenous glycinebetaine accumulation and increased salt-tolerance in rice seedlings. BiosciBiotechnolBiochem 60:366–368

    Google Scholar 

  • Hasthanasombut S, Ntui V, Supaibulwatana K, Mii M, Nakamura I (2010) Expression of Indica rice OsBADH1 gene under salinity stress in transgenic tobacco. Plant Biotechnol Rep 4:75–83

    Article  Google Scholar 

  • Hayashi H, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thalianawith the codAgene for choline oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Alia SA, Nonaka H, Chen TH, Murata N (1998) Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. J Plant Res 111:357–362

    Article  CAS  Google Scholar 

  • He CM, Yang AF, Zhang WW, Gao Q, Zhang JR (2010) Improved salt tolerance of transgenic wheat by introducing betA gene for glycinebetaine synthesis. Plant Cell Tissue Org Cult 101:65–78

    Article  CAS  Google Scholar 

  • Hibino T, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2002) Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. JBiol Chem 277:41352–41360

    Article  CAS  Google Scholar 

  • Holmström KO, Mantyala E, Welin B, Mandal A, Palva TE, Tunnela O, Londsborough J (1996) Drought tolerance in tobacco. Nature 379:683–684

    Google Scholar 

  • Holmstrom K-O, Somersalo S, Mandal A, Palva T, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycinebetaine. J Exp Bot 51:177–185

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of delta1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang J et al (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Igarashi Y, Yoshiba Y, Sanada Y, Wada K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativaL. Plant Mol Biol 33:857–865

    Article  PubMed  CAS  Google Scholar 

  • Iordachescu, M. and Imai, R. (2008), Trehalose Biosynthesis in Response to Abiotic Stresses. J Inte Plant Bio 50:1223–1229

    Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Johnson MK, Johnson EJ, MacElroy RD, Speer HL, Bruff BS (1968) Effects of salts on the halophilic alga Dunaliellaviridis. J Bacteriol 95:1461–1468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones RGW, Storey R (1981a) Betaines. In: Paleg LG, Aspinal D (eds) The physiology and biochemistry of drought resistance in plants. Academic Press, New York, pp 171–204

    Google Scholar 

  • Jones R, Storey R (1981b) Betaines. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic, New York, pp 171–204

    Google Scholar 

  • Kathuria H, Giri J, Nataraja KN, Murata N, Udayakumar M, Tyagi AK (2009) Glycinebetaine-induced water-stress toleranceincodA-expressing transgenic indicarice is associated with up-regulation of several stress responsive genes. Plant Bio J 7:512–526

    Article  CAS  Google Scholar 

  • Kaur G, Asthir B (2015) Proline: a key player in plant abiotic stress tolerance. Biol Plant 59:609–619

    Article  CAS  Google Scholar 

  • Kishitani S, Watanabe K, Yasuda S, Arakawa K, Takabe T (1994) Accumulation of glycinebetaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants. Plant Cell Environ 17:89–95

    Article  CAS  Google Scholar 

  • KuznetsovVl V, Shevyakova NI (1999) Proline under stress conditions: biological role, metabolism, and regulation. Russ J Plant Physiol 46:321–336

    Google Scholar 

  • Landfald B, Strom AR (1986) Choline-glycinebetaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 165:849–855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Rudulier D, Strøm AR, Dandekar AM, Smith LT, Valentaine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    Article  PubMed  Google Scholar 

  • Lilius G, Holmberg N, Bulow L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology 14:177–180

    CAS  Google Scholar 

  • Luo D, Niu XL, Yu JD, Yan J, Gou XJ, Lu B-R, Liu YS (2012) Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica). Plant Cell Rep 31:1625–1635

    Article  PubMed  CAS  Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    Article  CAS  Google Scholar 

  • Lai S-J, Lai M-C, Lee R-J, et al (2014) Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. Plant Molecular Biology 85. https://doi.org/10.1007/s11103-014-0195-8

  • Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B, Vanaja M, PardhaSardhi P (2010) Metabolic engineering using mtlDgene enhances tolerance to water deficit and salinity in sorghum. Biol Plant 54:647–652

    Article  CAS  Google Scholar 

  • Mäkelä SPP, Jokinen K, Pehu E, Setala H, Hinkkanen R, Somersalo S (1996) Uptake and translocation of foliar-applied glycinebetaine in crop plants. Plant Sci 121:221–230

    Article  Google Scholar 

  • Malekzadeh P (2015) Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). Physiol Mol Biol Plants 21:225–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matoh T, Watanabe J, Takahashi E (1987) Sodium, potassium, chloride, and betaine concentrations in isolated vacuoles from salt-grown Atriplex gmelini leaves. Plant Physiol 84:173–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mattioli R, Marchese D, D’Angeli S, Altamura MM, Costantino P, Trovato M (2008) Modulation of intracellular proline levels affects flowering time and in florescence architecture in Arabidopsis. Plant Mol Biol 66:277–288

    Article  PubMed  CAS  Google Scholar 

  • McNeil SD, Rhodes D, Russell BL, Nuccio ML, Shachar-Hill Y, Hanson AD (2000) Metabolic modeling identifies key constraints on an engineered glycinebetaine synthesis pathway in tobacco. Plant Physiol 124:153–162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Missihoun TD, Willee E, Guegan JP, Berardocco S, Shafiq MR (2015) Overexpression of ALDH10A8 and ALDH10A9 genes provides insight intotheir role in glycine betaine synthesis and affects primary metabolism in Arabidopsis thaliana. Plant Cell Physiol 56:1798–1807

    Google Scholar 

  • Moghaieb REA, Tanaka N, Saneoka H, Hussein HA, Yousef SS, Ewada MAF, Aly MAM, Fujita K (2000) Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potencial under salt stress. Soil Sci Plant Nutr 46:873–883

    Article  CAS  Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi AK (2002) Transgenics of an elite indica rice variety Pusa basmati 1 harboring the codA gene are highly tolerant to salt stress. TheorAppl Genet 106:51–57

    Article  CAS  Google Scholar 

  • Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Lett 296:187–189

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  PubMed  CAS  Google Scholar 

  • Niu X, Zheng W, Lu BR, Ren G, Huang W, Wang S (2007) An unusual post-transcriptional processing in two betaine aldehyde dehydrogenase (BADH) loci of cereal crops directed by short-direct repeats in response to stress conditions. Plant Physiol 143:1929–1942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nuccio ML, Russell BL, Nolte KD, Rathinasabapathi B, Gage DA, Hanson AD (1998) The endogenous choline supply limitsglycinebetaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant J 16:487–498

    Article  PubMed  CAS  Google Scholar 

  • Nyyssölä A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 275:22196–22201

    Article  PubMed  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycinebetaine on the structure and function in the oxygen-evolving photosystem II complex. Photosyn Res 44:243–252

    Article  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Murata N, Chen TH (2003) Genetic engineering of cold-tolerant tomato via glycinebetaine biosynthesis. CryobiolCryotech 49:77–85

    Google Scholar 

  • Park EJ, Jeknic Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen TH (2004) Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant J 40:474–487

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Jecnik Z, Chen TH (2006) Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol 47:706–714

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Pino MT, Murata N, Chen TH (2007) Glycinebetaine accumulation in chloroplasts is more effective than that in cytosol in protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005

    Article  PubMed  CAS  Google Scholar 

  • Patcharaporn Deshnium, Dmitry A. Los, Hidenori Hayashi, Laszlo Mustardy, Norio Murata, (1995) Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29(5):897–907

    Google Scholar 

  • Paul M, Pellny T, Goddijn OJM (2001) Enhancing photosynthesis with sugar signals. Trends Plant Sci 6:197–200

    Google Scholar 

  • Peng Z, Lu Q, Verma DPS (1996) Reciprocal regulation of D1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes control levels during and after osmotic stress in plants. Mol Gen Genet 253:334–341

    PubMed  CAS  Google Scholar 

  • Prabhavathi S, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (SolanummelongenaL.) by introduction of bacterial mannitol phosphor dehydrogenase gene. Mol Breed 9:137–147

    Article  CAS  Google Scholar 

  • Quan R, Shuang M, Zhang H, Zhao Y, Zhang J (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166:141–149

    Article  CAS  Google Scholar 

  • Rahnama H, Vakilian H, Fahimi H, Ghareyazie B (2011) Enhanced salt stress tolerance in transgenic potato plants ( Solanum tuberosumL.) expressing a bacterial mtlDgene. Acta Physiol Plant 33:1521–1532

    Article  CAS  Google Scholar 

  • Rajashekar CB, Zhou H, Marcum B, Prakash O (1999) Glycinebetaine accumulation and induction of cold tolerance in strawberry (Fragaria X ananassaDuch.) plants. Plant Sci 148:175–183

    Article  CAS  Google Scholar 

  • Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P, Golbeck JH, Hanson AD (1997) Cholinemonooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycinebetaine synthesis in plants: prosthetic groupcharacterization and cDNA cloning. Proc Nat Acad Sci 94:3454–3458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Richards AB, Krakowa S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2003) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40:871–898

    Article  Google Scholar 

  • Robinson S and Jones G (1986) Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress. Funct Plant Biol 13:659–668

    Google Scholar 

  • Romero C, Belles JM, Vaya JL, Serrano R, Culianez-Macia F A (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297

    Google Scholar 

  • Roychoudhury A, Chakraborty M (2013) Biochemical and molecular basis of varietal difference in plant salt tolerance. Annu Rev Res Biol 3:422–454

    Google Scholar 

  • Roychoudhury A, Banerjee A, Lahiri V (2015) Metabolic and molecular-genetic regulation of proline signaling and its cross-talk with major effectors mediates abiotic stress tolerance in plants. Turk J Bot 39:887–910

    Article  CAS  Google Scholar 

  • Rozwadowski KL, Khachatourians GG, Selvaraj G (1991) Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli. J Bacteriol 173:472–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubén A, Teresa A, Francisco M, Cristina B, Matthieu R, Csaba K, Pedro C, Antonio FT (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125:180–188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata A, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Saneoka H, Nagasaka C, Hahn DT, Yang W-J, Premachandra GS, Joly RJ, Rhodes D (1995) Salt tolerance of glycinebetainedeficientand -containing maize lines. Plant Physiol107:631–638

    Google Scholar 

  • Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24:721–725

    Article  CAS  Google Scholar 

  • Saxena SC, Kaur H, Verma P, Petla BP, Andugula VR, Majee M (2013) Osmoprotectants: potential for crop improvement under adverse conditions. In: Tuteja N, Singh SG (eds) Plant acclimation to environmental stress. Springer, New York, pp 197–232

    Chapter  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield underdrought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Shen B, Jensen RG, Bohnert HJ (1997) Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol 113:1177–1183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shirasawa K, Takabe T, Takabe T, Kishitani S (2006) Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Ann Bot (Lond) 98:565–571

    Article  CAS  Google Scholar 

  • Stephanopoulus G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681

    Article  Google Scholar 

  • Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  CAS  Google Scholar 

  • Takabe T et al. (1998) Evaluation of glycinebetaine accumulation for stress tolerance in transgenic rice plants. In Proceedings of International Workshop on Breeding and Biotechnology for Environmental Stress in Rice: Sapporo, Japan, pp. 63–68

    Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses stimulate photoinhibition? Trends Plant Sci 13:178–182

    Article  PubMed  CAS  Google Scholar 

  • Tisarum R, Theerawittaya C, Samphumphung T, Takabe T, Cha-um S (2019) Exogenous foliar application of Glycine betaine to alleviate water deficit tolerance in two Indica Rice genotypes under greenhouse conditions. Agronomy 9:138–153

    Article  CAS  Google Scholar 

  • Tyagi A, Sairam RK (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–420

    Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Waditee R, Bhuiyan MNH, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus andArabidopsis. Proc Natl Acad Sci U S A 102:1318–1323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang GP, Li F, Zhang J, Zhao MR, Hui Z, Wang W (2010) Overaccumulation of glycine betaine enhances tolerance of thephotosynthetic apparatus to drought and heat stress in wheat. Photosynthetica 48:30–41

    Article  CAS  Google Scholar 

  • Wei D, Zhang W, Wang C, Meng Q, Li G, HChen TH, Yang X (2017) Genetic engineering of the biosynthesis of glycine betaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci 257:74–83

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ, Saneoka H, Rhodes D, Joly RJ, Goldsbrough PB (1996) Betaine aldehyde dehydrogenase in Sorghum. Plant Physiol 110:1301–1308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu W, Su Q, Xia XY, Wang Y, Luan YS, An LJ (2007) The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. Euphytica 159:17–25

    Google Scholar 

  • Xing W, Rajashekar CB (1999) Alleviation of water stress in beans by exogenous glycine betaine. Plant Sci 148:185–195

    Article  CAS  Google Scholar 

  • Xing W, Rajashekar CB (2001) Glycinebetaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environ Exp Bot 46:21–28

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  PubMed  CAS  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In K Strange, ed, Cellular and Molecular Physiology of Cell Volume Regulation. CRC Press, Boca Raton, FL, pp. 81–109

    Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Rhodes D, Joly RJ (1996) Effects of high temperature on membrane stability and chlorophyll fluorescence inglycinebetainedeficient and glycinebetaine-containing maize lines. Aust J Plant Physio l23:437–443

    Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis againsthigh temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Wen X, Gong H, Lu O, Yang Z, Tang Y, Liang Z, Lu C (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733

    Article  PubMed  CAS  Google Scholar 

  • Yao T, Shaharuddin A, Chai H, Mahmood M, Shaharuddin N, Chai Ling H et al (2016) Application of glycinebetaine alleviates salt induced damages more efficiently than ascorbic acid in in vitro rice shoots. Austr J Basic Appl Sci 10:58–65

    CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta 1 pyrroline-5- carboxylate synthetase and the accumulation of proline in Arabidopsis thalianaunder osmotic stress. Plant J 7:751–760

    Article  PubMed  CAS  Google Scholar 

  • Zhang XY, Liang C, Wang GP, Luo Y, Wang W (2010) The protection of wheat plasma membrane under cold stress by glycine betaine overproduction. Biol Plant 54:83–88

    Article  CAS  Google Scholar 

  • Zhao Y, Aspinall D, Paleg LG (1992) Protection of membrane integrity in Medicago sativa L. by glycinebetaine against the effects of freezing. J Plant Physiol 140:541–543

    Article  CAS  Google Scholar 

  • Zhou X, Naguro I, Ichijo H, Watanabe K (2016) Mitogenactivated protein kinases as key players in osmotic stress signalling. Biochimica et Biophysica Acta (BBA)-General Subjects 1860:2037–2052

    Article  CAS  Google Scholar 

  • Zhu B, Su J, Chang M, Verma DPS, Fan YL, Wu R (1998) Overexpression of a D1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenicrice. Plant Sci 139:41–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh C. Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhowal, B., Chandra, P., Saxena, S.C. (2021). Engineering Glycine Betaine Biosynthesis in Alleviating Abiotic Stress Effects in Plants. In: Wani, S.H., Gangola, M.P., Ramadoss, B.R. (eds) Compatible Solutes Engineering for Crop Plants Facing Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-80674-3_4

Download citation

Publish with us

Policies and ethics