Skip to main content
Log in

Endothélium et microcirculation au cours des états critiques. Actes du séminaire de recherche translationnelle de la Société de réanimation de langue française (1er décembre 2015)

Endothelium and microcirculation in critically ill patients. Translational research meeting of Société de réanimation de langue française (December 1, 2015)

  • Comptes-Rendus de Congrès / Congresses, Conferences
  • Published:
Réanimation

Résumé

Dans les conditions physiologiques, l’endothélium régule le tonus vasomoteur et la pression artérielle, mais également le système de la coagulation, l’agrégation plaquettaire, et enfin la perméabilité vasculaire. Les cellules endothéliales de l’ensemble de l’organisme ont des propriétés communes, mais elles ont également des caractéristiques propres d’un organe à l’autre, définissant l’hétérogénéité endothéliale. La dysfonction endothéliale a été associée à de nombreux processus physiopathologiques, tels que l’inflammation et le stress oxydatif. L’altération de la fonction endothéliale conduit à des modifications phénotypiques et joue un rôle clé dans la physiopathologie des défaillances d’organes au cours des états critiques. Ainsi, la validation de nouveaux outils performants pour la détection précoce de la dysfonction endothéliale pourrait être d’un grand intérêt dans la prise en charge des patients de réanimation.

Abstract

Under physiological conditions, the endothelium regulates vasomotor tone, the coagulation cascade, platelet aggregation, and vascular permeability. Endothelial cells have common properties, but these vascular cells also have organ-related characteristics, defining the endothelial heterogeneity. Endothelial dysfunction has been associated with many pathophysiological processes such as inflammation and oxidative stress. Impaired endothelial function leads to phenotypic changes and is involved in the pathophysiology of organ failure during critical conditions. The development of accurate tools for the early detection of endothelial dysfunction and microcirculatory hypoperfusion could be of great interest in critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Pries AR, Kuebler WM (2006) Normal endothelium. Handb Exp Pharmacol 176: 1–40

    Article  PubMed  Google Scholar 

  2. Harrison DG, Widder J, Grumbach I, et al (2006) Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med 259: 351–63

    Article  CAS  PubMed  Google Scholar 

  3. Opal SM, van der Poll T (2015) Endothelial barrier dysfunction in septic shock. J Intern Med 277: 277–93

    Article  CAS  PubMed  Google Scholar 

  4. Lopez A, Lorente JA, Steingrub J, et al (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32: 21–30

    Article  CAS  PubMed  Google Scholar 

  5. Gomez E, Vercauteren M, Kurtz B, et al (2012) Reduction of heart failure by pharmacological inhibition or gene deletion of protein-tyrosine-phosphatase 1B. J Mol Cell Cardiol 52: 1257–64

    Article  CAS  PubMed  Google Scholar 

  6. Roche C, Besnier M, Cassel R, et al (2015) Soluble epoxide hydrolase inhibition improves coronary endothelial function and prevents the development of cardiac alterations in obese insulinresistant mice. Am J Physiol Heart Circ Physiol 308:H1020–H9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Asgeirsdottir SA, Kamps JA, Bakker HI, et al (2007) Sitespecific inhibition of glomerulonephritis progression by targeted delivery of dexamethasone to glomerular endothelium. Mol Pharmacol 72: 121–31

    Article  CAS  PubMed  Google Scholar 

  8. Nolan DJ, Ginsberg M, Israely E, et al (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26: 204–19

    Article  CAS  PubMed  Google Scholar 

  9. Kreuger J, Phillipson M (2016) Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov 15: 125–42

    Article  CAS  PubMed  Google Scholar 

  10. Kumar S, Kim CW, Simmons RD, et al (2014) Role of flowsensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol 34: 2206–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rom S, Dykstra H, Zuluaga-Ramirez V, et al (2015) miR-98 and let-7g* protect the blood-brain barrier under neuroinflammatory conditions. J Cereb Blood Flow Metab 35: 1957–65

    Article  CAS  PubMed  Google Scholar 

  12. Henrion D, Terzi F, Matrougui K, et al (1997) Impaired flowinduced dilation in mesenteric resistance arteries from mice lacking vimentin. J Clin Invest 100: 2909–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loutzenhiser R, Bidani A, Chilton L (2002) Renal myogenic response: kinetic attributes and physiological role. Circ Res 90: 1316–24

    Article  CAS  PubMed  Google Scholar 

  14. Ait-Oufella H, Maury E, Lehoux S, et al (2010) The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Med 36: 1286–98

    Article  CAS  PubMed  Google Scholar 

  15. Loufrani L, Li Z, Levy BI, et al (2002) Excessive microvascular adaptation to changes in blood flow in mice lacking gene encoding for desmin. Arterioscler Thromb Vasc Biol 22: 1579–84

    Article  CAS  PubMed  Google Scholar 

  16. Belin de Chantemele EJ, Vessieres E, Dumont O, et al (2009) Reactive oxygen species are necessary for high flow (shear stress)-induced diameter enlargement of rat resistance arteries. Microcirculation 16: 391–402

    Article  Google Scholar 

  17. Cousin M, Custaud MA, Baron-Menguy C, et al (2010) Role of angiotensin II in the remodeling induced by a chronic increase in flow in rat mesenteric resistance arteries. Hypertension 55: 109–15

    Article  CAS  PubMed  Google Scholar 

  18. Levy BI, Schiffrin EL, Mourad JJ, et al (2008) Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation 118: 968–76

    Article  PubMed  Google Scholar 

  19. Belin de Chantemele EJ, Vessieres E, Guihot AL, et al (2010) Cyclooxygenase-2 preserves flow-mediated remodelling in old obese Zucker rat mesenteric arteries. Cardiovasc Res 86: 516–25

    Article  Google Scholar 

  20. Freidja ML, Tarhouni K, Toutain B, et al (2012) The AGEbreaker ALT-711 restores high blood flow-dependent remodeling in mesenteric resistance arteries in a rat model of type 2 diabetes. Diabetes 61: 1562–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Delabranche X, Boisrame-Helms J, Asfar P, et al (2013) Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med 39: 1695–703

    Article  CAS  PubMed  Google Scholar 

  22. Boisrame-Helms J, Delabranche X, Degirmenci SE, et al (2014) Pharmacological modulation of procoagulant microparticles improves haemodynamic dysfunction during septic shock in rats. Thromb Haemost 111: 154–64

    Article  CAS  PubMed  Google Scholar 

  23. Simmons J, Pittet JF (2015) The coagulopathy of acute sepsis. Curr Opin Anaesthesiol 28: 227–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diehl JL, Borgel D (2005) Sepsis and coagulation. Curr Opin Crit Care 11: 454–60

    CAS  PubMed  Google Scholar 

  25. Lerolle N, Carlotti A, Melican K, et al (2013) Assessment of the interplay between blood and skin vascular abnormalities in adult purpura fulminans. Am J Respir Crit Care Med 188: 684–92

    Article  PubMed  Google Scholar 

  26. Iba T, Nagaoka I, Boulat M (2013) The anticoagulant therapy for sepsis-associated disseminated intravascular coagulation. Thromb Res 131: 383–9

    Article  CAS  PubMed  Google Scholar 

  27. Fujikawa K, Suzuki H, McMullen B, et al (2001) Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 98: 1662–6

    Article  CAS  PubMed  Google Scholar 

  28. Gerritsen HE, Robles R, Lammle B, et al (2001) Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood 98: 1654–61

    Article  CAS  PubMed  Google Scholar 

  29. Furlan M, Robles R, Galbusera M, et al (1998) von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med 339: 1578–84

    Article  CAS  PubMed  Google Scholar 

  30. Veyradier A, Obert B, Houllier A, et al (2001) Specific von Willebrand factor-cleaving protease in thrombotic microangiopathies: a study of 111 cases. Blood 98: 1765–72

    Article  CAS  PubMed  Google Scholar 

  31. Benhamou Y, Assie C, Boelle PY, et al (2012) Development and validation of a predictive model for death in acquired severe ADAMTS13 deficiency-associated idiopathic thrombotic thrombocytopenic purpura: the French TMA Reference Center experience. Haematologica 97: 1181–6

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mariotte E, Blet A, Galicier L, et al (2013) Unresponsive thrombotic thrombocytopenic purpura in critically ill adults. Intensive Care Med 39: 1272–81

    Article  PubMed  Google Scholar 

  33. Froissart A, Buffet M, Veyradier A, et al (2012) Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Experience of the French Thrombotic Microangiopathies Reference Center. Crit Care Med 40: 104–11

    Article  CAS  PubMed  Google Scholar 

  34. Schiviz A, Wuersch K, Piskernik C, et al (2012) A new mouse model mimicking thrombotic thrombocytopenic purpura: correction of symptoms by recombinant human ADAMTS13. Blood 119: 6128–35

    Article  CAS  PubMed  Google Scholar 

  35. Callewaert F, Roodt J, Ulrichts H, et al (2012) Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood 120: 3603–10

    Article  CAS  PubMed  Google Scholar 

  36. Boerma EC, Kuiper MA, Kingma WP, et al (2008) Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med 34: 1294–8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Verdant CL, De Backer D, Bruhn A, et al (2009) Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis. Crit Care Med 37: 2875–81

    Article  PubMed  Google Scholar 

  38. De Backer D, Ospina-Tascon G, Salgado D, et al (2010) Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 36: 1813–25

    Article  PubMed  Google Scholar 

  39. Boyle NH, Roberts PC, Ng B, et al (1999) Scanning Laser Doppler is a useful technique to assess foot cutaneous perfusion during femoral artery cannulation. Crit Care 3: 95–100

    Article  PubMed  PubMed Central  Google Scholar 

  40. Slaaf DW, Tangelder GJ, Reneman RS, et al (1987) A versatile incident illuminator for intravital microscopy. Int J Microcirc Clin Exp 6: 391–7

    CAS  PubMed  Google Scholar 

  41. van Elteren HA, Ince C, Tibboel D, et al (2015) Cutaneous microcirculation in preterm neonates: comparison between sidestream dark field (SDF) and incident dark field (IDF) imaging. J Clin Monit Comput 29: 543–8

    Article  PubMed  PubMed Central  Google Scholar 

  42. den Uil CA, Bezemer R, Miranda DR, et al (2009) Intraoperative assessment of human pulmonary alveoli in vivo using Sidestream Dark Field imaging: a feasibility study. Med Sci Monit 15:MT137–MT41

    Google Scholar 

  43. Taccone FS, Su F, De Deyne C, et al (2014) Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis. Crit Care Med 42:e114–e22

    Article  PubMed  Google Scholar 

  44. Trzeciak S, Dellinger RP, Parrillo JE, et al (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49: 88–98, 98 e81–e2

    Article  PubMed  Google Scholar 

  45. de Boer J, Potthoff H, Mulder PO, et al (1994) Lactate monitoring with subcutaneous microdialysis in patients with shock: a pilot study. Circ Shock 43: 57–63

    PubMed  Google Scholar 

  46. Mulier KE, Skarda DE, Taylor JH, et al (2008) Near-infrared spectroscopy in patients with severe sepsis: correlation with invasive hemodynamic measurements. Surg Infect (Larchmt) 9: 515–9

    Article  Google Scholar 

  47. Creteur J, Carollo T, Soldati G, et al (2007) The prognostic value of muscle StO2 in septic patients. Intensive Care Med 33: 1549–56

    Article  PubMed  Google Scholar 

  48. Weil MH, Nakagawa Y, Tang W, et al (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27: 1225–9

    Article  CAS  PubMed  Google Scholar 

  49. Marechal X, Favory R, Joulin O, et al (2008) Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 29: 572–6

    CAS  PubMed  Google Scholar 

  50. Ait-Oufella H, Lemoinne S, Boelle PY, et al (2011) Mottling score predicts survival in septic shock. Intensive Care Med 37: 801–7

    Article  CAS  PubMed  Google Scholar 

  51. De Backer D, Creteur J, Preiser JC, et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166: 98–104

    Article  PubMed  Google Scholar 

  52. Pottecher J, Deruddre S, Teboul JL, et al (2010) Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med 36: 1867–74

    Article  PubMed  Google Scholar 

  53. Ospina-Tascon G, Neves AP, Occhipinti G, et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36: 949–55

    Article  PubMed  Google Scholar 

  54. De Backer D, Verdant C, Chierego M, et al (2006) Effects of drotrecogin alfa activated on microcirculatory alterations in patients with severe sepsis. Crit Care Med 34: 1918–24

    Article  PubMed  Google Scholar 

  55. Favory R, Poissy J, Alves I, et al (2013) Activated protein C improves macrovascular and microvascular reactivity in human severe sepsis and septic shock. Shock 40: 512–8

    Article  CAS  PubMed  Google Scholar 

  56. Ranieri VM, Thompson BT, Barie PS, et al (2012) Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 366: 2055–64

    Article  CAS  PubMed  Google Scholar 

  57. Spronk PE, Ince C, Gardien MJ, et al (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360: 1395–6

    Article  PubMed  Google Scholar 

  58. Boerma EC, Koopmans M, Konijn A, et al (2010) Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial. Crit Care Med 38: 93–100

    Article  CAS  PubMed  Google Scholar 

  59. Ait-Oufella H, Bakker J (2016) Understanding clinical signs of poor tissue perfusion during septic shock. Intensive Care Med (in press)

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to H. Ait-Oufella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait-Oufella, H., Gibot, S., Guillon, A. et al. Endothélium et microcirculation au cours des états critiques. Actes du séminaire de recherche translationnelle de la Société de réanimation de langue française (1er décembre 2015). Réanimation 25, 431–439 (2016). https://doi.org/10.1007/s13546-016-1190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-016-1190-7

Mots clés

Keywords

Navigation