Skip to main content
Log in

Anticoagulation régionale des circuits extracorporels par le citrate

Regional anticoagulation in extracorporeal circuits by citrate

  • Article Original / Original Article
  • Published:
Réanimation

Résumé

L’anticoagulation au citrate des circuits d’épuration en réanimation est une alternative à l’anticoagulation systémique, notamment dans la prise en charge de l’insuffisance rénale aiguë. Dans le circuit extracorporel, la chélation du calcium sanguin par le citrate assure une anticoagulation régionale permettant de dissocier l’anticoagulation du circuit de celle du patient. Comparée aux héparines, l’anticoagulation au citrate augmente la durée de vie des filtres, diminue le nombre de transfusion et les accidents hémorragiques. Un protocole de correction de l’hypocalcémie induite chez le patient limite les accidents métaboliques. Métabolisé en bicarbonate par le foie, le citrate non filtré peut exposer le patient à l’alcalose ou à l’acidose en cas de défaillance hépatique. Le réglage des débits d’épuration extrarénale avec cette technique nécessite un apprentissage qui a été simplifié par la mise à disposition de générateurs d’épuration extrarénale dédiés à l’anticoagulation régionale au citrate.

Abstract

Regional citrate anticoagulation is a safe alternative to systemic anticoagulation during extracorporeal therapy in critically ill patients. Citrate is administrated in the extracorporeal circuit and chelates the calcium required in the coagulation cascade. Citrate provides safe regional anticoagulation without changes in the patient’s coagulation status. Compared to heparin, the benefits of regional citrate anticoagulation include less bleeding, less need for transfusion and longer circuit lifetime. However, citrate leads to hypocalcaemia that has to be corrected by calcium infusion. In the liver, non-filtered citrate is metabolized in bicarbonate and alkalosis may occur; its prevention is based on specific dialysis or dilution solutions. Acidosis may occur in case of liver failure. Use of dedicated devices based on written guidelines is the key-point to guarantee the procedure safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Knehtl M, Ponikvar R, Buturovic-Ponikvar J (2013) Plateletrelated hemostasis before and after hemodialysis with five different anticoagulation methods. Int J Artif Organs 36:717–24

    Article  CAS  PubMed  Google Scholar 

  2. Cardigan RA, McGloin H, Makie IJ, et al (1999) Activation of the tissue factor pathway occurs during continuous venovenous hemofiltration. Kidney Int 55:1568–74

    Article  CAS  PubMed  Google Scholar 

  3. Bouman C, de Pont AC, Meijers JC (2006) The effects of continuous venovenous hemofiltration on coagulation activation. Critical Care 10:R150

    Article  Google Scholar 

  4. Kleger GR, Fässler E (2010) Can circuit lifetime be a quality indicator in continuous renal replacement therapy in the critically ill? Int J Artif Organs 33:139–46

    PubMed  Google Scholar 

  5. Uchino S, Fealy N, Baldwin I (2003) Continuous is not continuous: the incidence and impact of circuit « down-time » on uraemic control during continuous veno-venous haemofiltration. Intensive Care Med 29:575–8

    Article  PubMed  Google Scholar 

  6. Cutts MW, Thomas AN, Kishen R (2000) Transfusion requirement during continuous venovenous haemofiltration: the importance of filter life. Intensive Care Med 26:1964–7

    Article  Google Scholar 

  7. Van de Watering J, Westendorp RG, Van der Hoeven JG, et al (1996) Heparin uses in continuous renal replacement procedures: the struggle between filter coagulation and patient hemorrhage. J Am Soc Nephrol 7:145–50

    Google Scholar 

  8. Lim W, Dentali F, Eikelboom JW, et al (2006) Meta-Analysis: Low-Molecular-Weight Heparin and bleeding in patients with severe renal insuffiency. Ann Intern Med 144:673–84

    Article  CAS  PubMed  Google Scholar 

  9. Oudemans-van Straaten HM, Wester JP, de Pont AC, Schetz MR (2006) Anticoagulation strategies in continuous renal replacement therapy: can the choice be evidence based? Intensive Care Med 32:188–202

    Article  CAS  PubMed  Google Scholar 

  10. Morita Y, Johnson R, Dorn RE, Hall DS (1961) Regional anticoagulation during hemodialysis using citrate. Am J Med Sci 242:32–43

    Article  CAS  PubMed  Google Scholar 

  11. Mehta RL, Mc Donald BR, Aguilar MM, et al (1990) Regional citrate anticoagulation for continuous arteriovenous hemodialysis in critically ill patients. Kidney Int 38:976–81

    Article  CAS  PubMed  Google Scholar 

  12. Durão MS, Monte JCM, Batista MC (2008) The use of regional citrate anticoagulation for continuous venovenous hemofiltration in acute kidney injury. Crit Care Med 36:3024–9

    Article  PubMed  Google Scholar 

  13. Brophy PD, Somers MJ, Baum MA, et al (2005) Multi-centre evaluation in patient receiving continuous renal replacement therapy. Nephrol Dial Transplant 20:1426–21

    Article  Google Scholar 

  14. Bagshaw SM, Laudpland KB, Boiteau PJ, et al (2005) Is regional citrate superior to systemic qnticoagulation for continuous renal replacement therapy? A prospective observational study in an adult regional critical care system. J Crit Care 20:155–61

    Article  CAS  PubMed  Google Scholar 

  15. Monchi M, Berghmans D, Ledoux D, et al (2004) Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med 30:260–5

    Article  PubMed  Google Scholar 

  16. Fealy N, Baldwin I, Johnstone M, et al (2007) A pilot randomized controlled crossover study comparing regional heparinization to regional citrate anticoagulation for continuous venovenous hemofiltration. Int J Artif organs 30:301–7

    CAS  PubMed  Google Scholar 

  17. Wu MY, Hsu YH, Bai CH, Lin YF, et al (2013) Regional citrate versus heparin anticoagulation for continuous renal replacement therapy: a meta-analysis of randomized controlled trials. Am J Kidney Dis 59:810–8

    Article  Google Scholar 

  18. KDIGO (2012) Clinical practice guidelines for Acute Kidney Injury. Kidney Int (supp. 2):1–138

    Article  Google Scholar 

  19. Hartmann J, Strobl K, Fichtinger U, et al (2012). In vitro investigations of citrate clearance with different dialysis filters. Int J Artif Organs 35:352–9

    Article  CAS  PubMed  Google Scholar 

  20. Whitfied LR, Levy G (1981) Permeability of human and rat red blood cells to citrate. Throm Res 21:681–4

    Article  Google Scholar 

  21. Mariano F, Morselli M, Bergamo D, et al (2011) Blood and ultrafiltrate dosage of citrate as a useful and routine tool during continuous venovenous haemodiafiltration in septic patients. Nephrol Dial Transplant 26:3882–8

    Article  CAS  PubMed  Google Scholar 

  22. Zaloga GP (1992) Hypocalcemia in critically ill patients. Crit Care Med 20:251–62

    Article  CAS  PubMed  Google Scholar 

  23. Buturovic-Ponikvar J, Gubensek J, Ponikvar R (2008) Citrate anticoagulation for postdilutional online hemodiafiltration with calcium-containing dialysate and infusate: significant clotting in the venous bubble trap. Int J Artif Organs 31:323–8

    CAS  PubMed  Google Scholar 

  24. Cointault O, Kamar N, Bories P, et al (2004) Regional citrate anticoagulation in continuous venovenous haemodiafiltration. Nephrol Dial Transplant 19:171–8

    Article  CAS  PubMed  Google Scholar 

  25. Mariano F, Tedeshi L, Moreselli M, et al (2010) Normal citratemia and metabolic tolerance of citrate anticoagulation for hemodiafiltration in severe septic shock burn patients. Intensive Care Med 36:1735–43

    Article  CAS  PubMed  Google Scholar 

  26. Brain M, Parkes S, Fowler R, et al (2011) Calcium flux in CVVHDF with heparin and citrate anticoagulation. Critical Care Resusc 13:72–81

    Google Scholar 

  27. Brain M, Parkes S, Fowler R, et al (2012) Magnesium flux during CVVHDF with heparin and citrate anticoagulation, Critical Care Resusc 14:274–82

    Google Scholar 

  28. Gabutti L, Marone C, Colucci G, et al (2002) Citrate anticoagulation in continuous venovenous hemodiafiltration: a metabolic challenge. Intensive Care Med 28:1419–25

    Article  PubMed  Google Scholar 

  29. Ronco C, Bellomo R, Homel, et al (2000) Effects of different doses in continuous veno-venous hemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 355:26–30

    Article  Google Scholar 

  30. Lancohr C, Hanenamp K, Boshin M (2013) Continuous renal replacement therapy with citrate anticoagulation: do we really know the details. Curr Opin Anesthesiol 26:428–37

    Article  Google Scholar 

  31. Palsonn R, Laliberte KA, Niles JL (2006) Choice of replacement solution and anticoagulation in venovenous hemofiltration. Clinical Nephrology 65:34–42

    Article  Google Scholar 

  32. Morgera S, Sneider M, Slowinski T, et al (2009) A safe citrate anticoagulation protocol with variable treatment efficacy and excellent control of the acid-base status. Crit Care Med 37:2018–24

    Article  CAS  PubMed  Google Scholar 

  33. Davies H, Nurs B, Moragan D, et al (2008) A regional citrate anticoagulation protocol for prédilutionnal CVVHDf: The modified Alabama protocol. Australian Crit Care 21:154–66

    Article  Google Scholar 

  34. Nurmohamed SA, Jallah BP, Vervloet MG, et al (2013) Continuous venovenous haemofiltration with citrate buffered replacement solution is safe and efficacious in patient with a bleeding tendency: a prospective observational study. BMC Nephrology 14:89

    Article  PubMed Central  PubMed  Google Scholar 

  35. Aman J, Nurmohamed A, Vervloet MG, et al (2010) Metabolic effects of citrate vs. bicarbonate-based substitution fluid in continuous venovenous hemofiltration: q prospective sequential cohort study. J Crit Care 25:120–7

    Article  CAS  PubMed  Google Scholar 

  36. Kindgen-Milles D, Amman J, Kleinekofort W, Morgera S (2008) Treatment of metabolic alkalosis during continuous renal replacement therapy with regional citrate anticoagulation. Int J Artif Organs 31:363–6

    CAS  PubMed  Google Scholar 

  37. Demirjian S, Wee B, Paganini E (2008) Alkalemia during real therapy and mortality in critically ill patients. Crit Care Med 36:1513–7

    Article  CAS  PubMed  Google Scholar 

  38. Kramer L, Bauer E, Joukhadar C, et al (2003) Citrate pharmacokinetic and metabolism in cirrhotic and non cirrhotic critically ill patients. Crit Care Med 31:2450–5

    Article  CAS  PubMed  Google Scholar 

  39. Meier-Krieshe HU, Gitomer J, Finkel K, et al (2001) Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med 29:748–52

    Article  Google Scholar 

  40. Shultheiß C, Saugel B, Phillip V, et al (2012) Continuous venovenous hemodialysis with citrate anticoagulation in patient with liver failure: a prospective observational study. Crit Care 16:R162

    Article  Google Scholar 

  41. Link A, Klingele M, Speer T, et al (2012) Total-to-ionized calcium ratio predicts mortality in continuous renal replacement therapy with citrate anticoagulation in critically ill patients. Crit Care 16:R97

    Article  Google Scholar 

  42. Balik M, Zakharchenko M, Leden p, et al (2013) Bionenergetic gain of citrate anticoagulated continuous hemodiafiltration: comparaison between 2 citrate modalities and unfractionated heparin. J Crit Care 28:87–95

    Article  CAS  PubMed  Google Scholar 

  43. Vinsonneau C, Camus C, Combes A, et al (2006) Continuous venovenous haemofiltration versus intermittent haemodialysis for acute renal failure in patients with multiple organe failure syndrome: a multicentre randomised trial. Lancet 368:379–85

    Article  PubMed  Google Scholar 

  44. The VA/NIH qcute renal trial network (2008) Intensity of renal support in critically ill patients with acute kidney Injury. N Eng J Med 359:7–20

    Article  Google Scholar 

  45. Jansen MJ, Deegens JK, Kapinga TH, et al (1996) Citrate compared to low molecular weight heparin anticoagulation in chronic hemodialysis patient. Kidney Int 49:806–13

    Article  Google Scholar 

  46. Thijssen S, Kruse A, Raimann J, et al (2010) A mathematical model of regional citrate anticoagulation in haemodialysis. Blood Purif 29:197–203

    Article  PubMed  Google Scholar 

  47. Apsner R, Buchmayer H, Gruber D, et al (2005) Citrate for long term hemodialysis: prospective study of 1,009 consecutive high flux treatments in 59 patients. Am J Kidney Dis 45:557–64

    Article  CAS  PubMed  Google Scholar 

  48. Fiaccadori E, Regolisti G, Cademartiri C, et al (2013) Efficacy and Safety of a Citrate-Based Protocol for Substained Low-Efficiency Dialysis in AKI Using Standard Dialysis Equipment. Clin J Am Soc Nephrol 8:1670–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Morgera S, Sholle C, Melzer C, et al (2004) A simple safe and effective citrate anticoagulation protocol for genius dialysis in acute renal failure. Nephron Clin Pract 98:C35–40

    Article  Google Scholar 

  50. Clark JA, Shulman G, Golper TA (2008) Safety and efficacy of regional citrate anticoagulation during 8 hours substained low effiency dialysis. Clin J Am Soc Nephrol 3:736–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Schneider M, Liefeldt L, Slowinski T, et al (2008) Citrate anticoagulation protocol for slow extended hemodialysis with the Genius dialysis system in acute renal failure. Int J Artif Organs 31:43–8

    CAS  PubMed  Google Scholar 

  52. Lee G, Arepally GM (2012) Anticoagulation techniques in apharesis from heparin to citrate and beyond. J Clin Apheresis 27:117–25

    Article  PubMed Central  PubMed  Google Scholar 

  53. Antonic M, Gubensek J, Buturovic-Ponikvar J, Ponikvar R (2009) Comparison of citrate anticoagulation during plasma exchange with different replacement solutions. Ther Apher Dial. 13:322–6

    Article  CAS  PubMed  Google Scholar 

  54. Bacher A (2011) extracorporeal liver support with multipass albumin dialysis or plasmapheresis and filtering systems in acute liver failure. Liver Int 31(Supp.3):16–8

    Article  PubMed  Google Scholar 

  55. Tripisciano C, Leistner A, Linsberger I, et al (2012) Effect of anticoagulation with citrate versus heparin on the adsorption of coagulation factors to blood purification resins with different charge. Biomacromolecules 13:484–8

    Article  CAS  PubMed  Google Scholar 

  56. Meijers B, Laleman W, Vermersh P, et al (2012) A prospective randomized open-label crossover trial of regional anticoagulation vs. Anticoagulation free liver dialysis by the Molecular Adsorbents Recirculating System. Critical Care 16:R20

    Article  Google Scholar 

  57. Kantola T, Kantola T, Koivusalo AM, et al (2009) Early molecular adsorbents recirculating system treatment of Amanita mushroom poisoning. Ther Apher Dial 13:399–403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ducq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducq, P., Delaporte, E. Anticoagulation régionale des circuits extracorporels par le citrate. Réanimation 23, 618–628 (2014). https://doi.org/10.1007/s13546-014-0927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-014-0927-4

Mots clés

Keywords

Navigation