Skip to main content
Log in

Apoptosis induction and anti-cancer activity of LeciPlex formulations

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery.

Methods

Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential.

Results

In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system.

Conclusions

Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

LP:

LeciPlex

CTAB:

Cetyltrimethylammonium bromide

DDAB:

Didodecyldimethylammonium bromide

HNSSC:

Head and Neck Squamous Cell Carcinoma

FBM:

Fetal Buccal Mucosa

PL:

90G Phospholipon 90G

CTAB-LeciPlex:

(CTLP)

DDLP:

DDAB-LeciPlex

PI:

Polydispersity

QR:

Quercetin.

References

  1. G. Fricker, T. Kromp, A. Wendel, A. Blume, J. Zirkel, H. Rebmann, C. Setzer, R.O. Quinkert, F. Martin, C. Müller-Goymann, Phospholipids and lipid-based formulations in oral drug delivery. Pharm. Res. 27, 1469–1486 (2010)

    Article  PubMed  CAS  Google Scholar 

  2. I.F. Kretzer, D.A. Maria, R.C. Maranhão, Drug-targeting in combined cancer chemotherapy: tumor growth inhibition in mice by association of paclitaxel and etoposide with a cholesterol-rich nanoemulsion. Cell. Oncol. 35, 451–460 (2012)

    Article  CAS  Google Scholar 

  3. A.-L. Papa, A. Sidiqui, S.U.A. Balasubramanian, S. Sarangi, M. Luchette, S. Sengupta, R. Harfouche, PEGylated liposomal Gemcitabine: insights into a potential breast cancer therapeutic. Cell. Oncol. 36, 449–457 (2013)

    Article  CAS  Google Scholar 

  4. B.S. Anand, J.J. Romero BS, S.K. Sanduja, L.M. Lichtenberger, Phospholipid association reduces the gastric mucosal toxicity of aspirin in human subjects. Am. J. Gastroenterol 94, 1818–1822 (1999)

    Article  PubMed  CAS  Google Scholar 

  5. X. Yan-yu, S. Yun-mei, C. Zhi-peng, P. Qi-neng, Preparation of silymarin proliposome: a new way to increase oral bioavailability of silymarin in beagle dogs. Int. J. of Pharm. 319, 162–168 (2006)

    Article  Google Scholar 

  6. Y.C. Kuoand, C.C. Wang, Cationic solid lipid nanoparticles with cholesterol-mediated surface layer for transporting saquinavir to the brain. Biotechnol. Prog. 30, 198–206 (2014)

    Article  Google Scholar 

  7. J.F. Fangueiro, T. Andreani, M.A. Egea, M.L. Garcia, S.B. Souto, A.M. Silva, E.B. Souto, Design of cationic lipid nanoparticles for ocular delivery: development, characterization and cytotoxicity. Int. J. Pharm. 461, 64–73 (2014)

    Article  PubMed  CAS  Google Scholar 

  8. P. Khachane, A. Jain, V. Dhawan, G. Joshi, A. Date, R. Mulherker, and M. Nagarsenker. Cationic Nanoemulsions As Potential Carriers For Intracellular Delivery. Saudi Pharm. J. Accepted for Publication, (2014).

  9. R. Cortesi, M. Campioni, L. Ravani, M. Drechsler, M. Pinotti, E. Esposito, Cationic lipid nanosystems as carriers for nucleic acids. New Biotechnol. 31, 44–54 (2014)

    Article  CAS  Google Scholar 

  10. S. Doktorovova, R. Shegokar, E. Rakovsky, E. Gonzalez-Mira, C.M. Lopes, A.M. Silva, P. Martins-Lopes, R.H. Muller, E.B. Souto, Cationic solid lipid nanoparticles (cSLN): Structure, stability and DNA binding capacity correlation studies. Int. J. Pharm. 420, 341–349 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. R.S. Dias, B. Lindman, M.G. Miguel, DNA interaction with catanionic vesicles. J. Phys. Chem. B. 106, 12600–12607 (2002)

    Article  CAS  Google Scholar 

  12. M. Rosa, M. del Carmen Morán, M. da Graça Miguel, B. Lindman, The association of DNA and stable catanionic amino acid-based vesicles. Colloid. Surf. A: Physicochem. Eng. Asp. 301, 361–375 (2007)

    Article  CAS  Google Scholar 

  13. P. Jokela, B. Joensson, A. Khan, Phase equilibria of catanionic surfactant-water systems. J. Phys. Chem. 91, 3291–3298 (1987)

    Article  CAS  Google Scholar 

  14. A. Fischer, M. Hebrant, C. Tondre, Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/water system. J. Colloid Interface Sci. 248, 163–168 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. T. Bramer, N. Dew, K. Edsman, Catanionic mixtures involving a drug: a rather general concept that can be utilized for prolonged drug release from gels. J. Pharm. Sci. 95, 769–780 (2006)

    Article  PubMed  CAS  Google Scholar 

  16. N. Dew, T. Bramer, K. Edsman, Catanionic aggregates formed from drugs and lauric or capric acids enable prolonged release from gels. J. Colloid Interface Sci. 323, 386–394 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. A.A. Date, D. Srivastava, M.S. Nagarsenker, R. Mulherkar, L. Panicker, V. Aswal, P.A. Hassan, F. Steiniger, J. Thamm, A. Fahr, Lecithin-based novel cationic nanocarriers (LeciPlex) i: fabrication, characterization and evaluation. Nanomedicine. 6, 1309–1325 (2011)

    Article  PubMed  CAS  Google Scholar 

  18. E. Ito, K.W. Yip, D. Katz, S.B. Fonseca, D.W. Hedley, S. Chow, G.W. Xu, T.E. Wood, C. Bastianutto, A.D. Schimmer, Potential use of cetrimonium bromide as an apoptosis-promoting anticancer agent for head and neck cancer. Mol. Pharmacol. 76, 969–983 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. S. Ramos, Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. The J. Nutr. Biochem. 18, 427–442 (2007)

    Article  CAS  Google Scholar 

  20. S.-F. Chen, S. Nien, C.-H. Wu, C.-L. Liu, Y.-C. Chang, Y.-S. Lin, Reappraisal of the anticancer efficacy of quercetin in oral cancer cells. J. Chin. Med. 76, 146–152 (2013)

    CAS  Google Scholar 

  21. F.H. Psahoulia, K.G. Drosopoulos, L. Doubravska, L. Andera, A. Pintzas, Quercetin enhances TRAIL-mediated apoptosis in colon cancer cells by inducing the accumulation of death receptors in lipid rafts. Mol. Cancer Ther. 6, 2591–2599 (2007)

    Article  PubMed  CAS  Google Scholar 

  22. C.-C. Chou, J.-S. Yang, H.-F. Lu, S.-W. Ip, C. Lo, C.-C. Wu, J.-P. Lin, N.-Y. Tang, J.-G. Chung, M.-J. Chou, Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. of Pharm. Res. 33, 1181–1191 (2010)

    Article  CAS  Google Scholar 

  23. C. Chen, J. Zhou, C. Ji, Quercetin: a potential drug to reverse multidrug resistance. Life Sci. 87, 333–338 (2010)

    Article  PubMed  CAS  Google Scholar 

  24. S.J. Oh, O. Kim, J.S. Lee, J. Kim, M.R. Kim, H.S. Choi, J.-H. Shim, K.W. Kang, Y.C. Kim, Inhibition of angiogenesis by quercetin in tamoxifen-resistant breast cancer cells. Food and Chem. Toxicol. 48, 3227–3234 (2010)

    Article  CAS  Google Scholar 

  25. H. Li, X. Zhao, Y. Ma, G. Zhai, L. Li, H. Lou, Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release. 133, 238–244 (2009)

    Article  PubMed  CAS  Google Scholar 

  26. Z.-P. Yuan, L.-J. Chen, L.-Y. Fan, M.-H. Tang, G.-I. Yang, H.-S. Yang, X.-B. Du, G.-Q. Wang, W.-X. Yao, Q.-M. Zhao, Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin. Cancer Res 12, 3193–3199 (2006)

    Article  PubMed  CAS  Google Scholar 

  27. R. Mulherkar, A.P. Goud, A.S. Wagle, K. Naresh, M.B. Mahimkar, S.M. Thomas, S. Pradhan, M. Deo, Establishment of a human squamous cell carcinoma cell line of the upper aero-digestive tract. Cancer Lett. 118, 115–121 (1997)

    Article  PubMed  CAS  Google Scholar 

  28. A.A. Date, M.S. Nagarsenker, S. Patere, V. Dhawan, R. Gude, P. Hassan, V. Aswal, F. Steiniger, J. Thamm, A. Fahr, Lecithin-based novel cationic nanocarriers (Leciplex) II: improving therapeutic efficacy of quercetin on oral administration†. Mol. Pharm. 8, 716–726 (2011)

    Article  PubMed  CAS  Google Scholar 

  29. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J.T. Warren, H. Bokesch, S. Kenney, M.R. Boyd, New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107–1112 (1990)

    Article  PubMed  CAS  Google Scholar 

  30. A.S. Jain, S.M. Shah, M.S. Nagarsenker, Y. Nikam, R.P. Gude, F. Steiniger, J. Thamm, A. Fahr, Lipid colloidal carriers for improvement of anticancer activity of orally delivered quercetin: formulation. Characterization and Establishing In VitroIn Vivo Advantage. J. Biomed. Nanotechnol. 9, 1230–1240 (2013)

    CAS  Google Scholar 

  31. K.-I. Kusumoto, T. Ishikawa, Didodecyldimethylammonium bromide (DDAB) induces caspase-mediated apoptosis in human leukemia HL-60 cells. J. Control. Release 147, 246–252 (2010)

    Article  PubMed  CAS  Google Scholar 

  32. A.P. Nifli, P.A. Theodoropoulos, S. Munier, C. Castagnino, E. Roussakis, H.E. Katerinopoulos, J. Vercauteren, E. Castanas, Quercetin exhibits a specific fluorescence in cellular milieu: a valuable tool for the study of its intracellular distribution. J. Agric. Food Chem. 55, 2873–2878 (2007)

    Article  PubMed  CAS  Google Scholar 

  33. H.B. Liu, D. Yu, S.C. Shin, H.R. Park, J.K. Park, K.M. Bark, Spectroscopic properties of quercetin derivatives, quercetin 3 O rhamnoside and quercetin 3 O rutinoside, in hydro organic mixed solvents. Photochem. Photobiol. 85, 934–942 (2009)

    Article  PubMed  CAS  Google Scholar 

  34. P. Khumsupan, R. Ramirez, D. Khumsupan, V. Narayanaswami, Apolipoprotein E LDL receptor-binding domain-containing high-density lipoprotein: a nanovehicle to transport curcumin, an antioxidant and anti-amyloid bioflavonoid. Biochim. Biophys. Acta. 1808, 352–9 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  35. B. Senguptaand, P.K. Sengupta, Binding of quercetin with human serum albumin: a critical spectroscopic study. Biopolymers. 72, 427–434 (2003)

    Article  Google Scholar 

  36. K. Makinoand, A. Shibata, Surface properties of liposomes depending on their composition. Adv. Planar Lipid Bilayers and Liposomes. 4, 49–77 (2006)

    Article  Google Scholar 

  37. N. Vlachy, D. Touraud, J. Heilmann, W. Kunz, Determining the cytotoxicity of catanionic surfactant mixtures on HeLa cells. Colloid. Surf. B: Biointerfaces. 70, 278–280 (2009)

    Article  PubMed  CAS  Google Scholar 

  38. J.-H.S. Kuo, M.-S. Jan, C.-H. Chang, H.-W. Chiu, C.-T. Li, Cytotoxicity characterization of catanionic vesicles in RAW 264.7 murine macrophage-like cells. Colloid. Surf. B: Biointerfaces 41, 189–196 (2005)

    Article  PubMed  CAS  Google Scholar 

  39. S. Doktorovová, D.L. Santos, I. Costa, T. Andreani, E.B. Souto, A.M. Silva, Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells. Int. J. Pharm. 471, 18–27 (2014)

    Article  PubMed  Google Scholar 

  40. C. Carbone, A. Campisi, D. Manno, A. Serra, M. Spatuzza, T. Musumeci, R. Bonfanti, G. Puglisi, The critical role of didodecyldimethylammonium bromide on physico-chemical, technological and biological properties of NLC. Colloid. Surf. B: Biointerfaces. 121, 1–10 (2014)

    Article  PubMed  CAS  Google Scholar 

  41. C.H. Liang, T.H. Chou, Effect of chain length on physicochemical properties and cytotoxicity of cationic vesicles composed of phosphatidylcholines and dialkyldimethylammonium bromides. Chem. Phys. Lipids. 158, 81–90 (2009)

  42. C. Aiello, P. Andreozzi, C. La Mesa, G. Risuleo, Biological activity of SDS-CTAB cat-anionic vesicles in cultured cells and assessment of their cytotoxicity ending in apoptosis. Colloid. Surf. B: Biointerfaces. 78, 149–154 (2010)

    Article  PubMed  CAS  Google Scholar 

  43. C. Carbone, B. Tomasello, B. Ruozi, M. Renis, G. Puglisi, Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. Eur. J. Med. Chem. 49, 110–117 (2012)

    Article  PubMed  CAS  Google Scholar 

  44. Z. Darzynkiewiczand X. Huang. Analysis of cellular DNA content by flow cytometry. Curr. Protoc. Immunol. 5 (2004).

Download references

Acknowledgments

The authors are thankful to Lipoid GmBH, Germany, for providing samples of various phospholipids as gifts. The authors would also like to thank Gattefosse India Ltd., Mumbai, India, Gangwal Chemicals, Mumbai, India for providing samples of Transcutol HP and trehalose as gifts, respectively. The authors wish to thank Mr. D.D. Bhogale and Prof. D.C. Kothari of the Centre for Nanosciences and Nanotechnology, University of Mumbai, for the fluorescence measurements. The authors also wish to thank the All India Council for Technical Education (AICTE) and the Amrut Mody Research Fund (AMRF) for providing financial assistance. In addition, the authors wish to thank Dr. Krishna Iyer, Prof. at Bombay College of Pharmacy, for his help in preparation of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangal S. Nagarsenker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhawan, V.V., Joshi, G.V., Jain, A.S. et al. Apoptosis induction and anti-cancer activity of LeciPlex formulations. Cell Oncol. 37, 339–351 (2014). https://doi.org/10.1007/s13402-014-0183-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0183-7

Keywords

Navigation