Skip to main content

Advertisement

Log in

Pathways of lignocellulosic biomass conversion to renewable fuels

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The increased worldwide demand for energy, particularly from petroleum-derived fuels has led to the search for a long-term solution of a reliable source of clean energy. Lignocellulosic biomasses appear to hold the key for a continuous supply of renewable fuels without compromising with the increasing energy needs. However, the major possible solutions to the current energy crisis include ethanol, bio-oils and synthesis gas (syngas) produced from lignocellulosic biomass. Recently, a great deal of research has been made in the fields of biomass conversion through biochemical, hydrothermal or thermochemical pathways to biofuels. However, a broad-spectrum assessment of the above pathways is rare in literature in terms of technology used, biofuel yields, potential challenges and possible outcomes. This review paper discusses different routes for biofuel production, particularly ethanol, bio-oil and syngas with the bio-oil upgrading techniques. This review highlights ethanol fermentation and available biomass pretreatment as the biochemical mode, not limiting to the pros and cons of the pretreatments. Supercritical water gasification (hydrothermal pathway) of biomass for syngas production followed by gas-to-liquid technologies (syngas fermentation and Fischer–Tropsch catalysis) has been discussed. In addition, thermochemical pathway dealing with biomass gasification for syngas and pyrolysis for bio-oils has been presented with compositional analysis of bio-oils and their upgrading technologies. The review focuses on various engineering limitations encountered during biomass conversion and bioprocessing with the potential solutions which do not restrict them to different biofuel production pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFEX:

Ammonia fibre explosion

CNT:

Carbon nanotubes

CHP:

Combined heat and power

CSTR:

Continuous stirred tank reactor

DME:

Dimethyl ether

FT:

Fischer–Tropsch

FFV:

Flexible fuel vehicle

GTL:

Gas-to-liquid

GHG:

Greenhouse gas

HMF:

Hydroxymethylfurfural

LHSV:

Liquid hourly space velocity

MPa:

Megapascal

PI:

Performance Index

PCR:

Polymerase chain reaction

SHF:

Separate hydrolysis and fermentation

SSF:

Simultaneous saccharification and fermentation

SCCO2 :

Supercritical CO2

SCW:

Supercritical water

SCWG:

Supercritical water gasification

WGS:

Water–gas shift

M n :

Average molecular weight

P c :

Critical pressure

T c :

Critical temperature

ΔH R :

Heat of reaction

K w :

Ionic product of water

M w :

Molecular weight

M w /M n :

Polydispersity Index

wt%:

Weight percent

References

  1. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Convers Manage 52:858–875. doi:10.1016/j.enconman.2010.08.013

    Google Scholar 

  2. International Energy Agency (IEA) (2012) CO2 emissions from fuel combustion highlights. 2012 ed. Luxembourg

  3. International Energy Outlook (IEO) (2011) U.S. Energy Information Administration, Washington, DC. www.eia.gov/ieo/pdf/0484(2011).pdf. Accessed 1 March 2011

  4. U.S. Energy Information Administration (USEIA) (2013) U.S. Department of Energy, Washington. http://www.eia.gov. Accessed 14 April 2013

  5. Demain AL (2009) Biosolutions to the energy problem. J Ind Microbiol Biotechnol 36:319–332. doi:10.1007/s10295-008-0521-8

    Google Scholar 

  6. Fang X, Shen Y, Zhao J, Bao X, Qu Y (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101:4814–4819. doi:10.1016/j.biortech.2009.11.050

    Google Scholar 

  7. Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna JV, Rajasree KP, Pandey A (2010) Lignocellulosic ethanol in India: prospects, challenges and feedstock availability. Bioresour Technol 101:4826–4833. doi:10.1016/j.biortech.2009.11.049

    Google Scholar 

  8. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotech Adv 27:185–194. doi:10.1016/j.biotechadv.2008.11.001

    Google Scholar 

  9. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375. doi:10.1016/j.biombioe.2003.08.002

    Google Scholar 

  10. Mabee WE, Saddler JN (2010) Bioethanol from lignocellulosics: status and perspectives in Canada. Bioresour Technol 101:4806–4813. doi:10.1016/j.biortech.2009.10.098

    Google Scholar 

  11. Foust TD, Aden A, Dutta A, Phillips S (2009) An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose 16:547–565. doi:10.1007/s10570-009-9317-x

    Google Scholar 

  12. Trostle R (2011) Global agricultural supply and demand: factors contributing to the recent increase in food commodity prices. USDA, a report from the economic research service; 2008. www.ers.usda.gov/Publications/WRS0801/WRS0801.pdf. Accessed 23 April 2011

  13. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568. doi:10.1111/j.1365-313X.2008.03463.x

    Google Scholar 

  14. Nanda S, Azargohar R, Kozinski JA, Dalai AK (2013) Characteristic studies on the pyrolysis products from hydrolyzed Canadian lignocellulosic feedstocks. Bioenerg Res. doi:10.1007/s12155-013-9359-7

    Google Scholar 

  15. Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenerg Res 6:663–677. doi:10.1007/s12155-012-9281-4

    Google Scholar 

  16. Raveendran K, Ganesh A, Khilar KC (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74:1812–1822. doi:10.1016/0016-2361(95)80013-8

    Google Scholar 

  17. Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renew Energ 35:1624–1631. doi:10.1016/j.renene.2009.08.033

    Google Scholar 

  18. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848. doi:10.1016/j.procbio.2003.09.011

    Google Scholar 

  19. Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Res Conserv Recycl 50:1–39. doi:10.1016/j.resconrec.2006.05.007

    Google Scholar 

  20. Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47. doi:10.1016/S0960-8524(03)00097-X

    Google Scholar 

  21. Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114. doi:10.1023/A:1020858910646

    Google Scholar 

  22. Qian Y, Zuo C, Tan J, He J (2007) Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass. Energy 32:196–202. doi:10.1016/j.energy.2006.03.027

    Google Scholar 

  23. Sjostrom E (1993) Wood chemistry fundamentals and applications, 2nd edn. Academic Press, San Diego

    Google Scholar 

  24. Demirbas MF (2006) Current technologies for biomass conversion into chemicals and fuels. Energ Source Part A 28:1181–1188. doi:10.1080/00908310500434556

    Google Scholar 

  25. Griffin DW, Schultz MA (2012) Fuel and chemical products from biomass syngas: a conversion of gas fermentation to thermochemical conversion routes. Environ Prog Sustain Energ 31:219–224. doi:10.1002/ep.11613

    Google Scholar 

  26. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.1021/ie801542g

    Google Scholar 

  27. Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg 46:25–35. doi:10.1016/j.biombioe.2012.04.020

    Google Scholar 

  28. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. doi:10.1016/S0960-8524(01)00212-7

    Google Scholar 

  29. Youssef BM, Aziz NH (1999) Influence of gamma-irradiation on the bioconversion of rice straw by Trichoderma viride into single cell protein. Cytobios 97:171–183

    Google Scholar 

  30. Bak JS, Ko JK, Han YH, Lee BC, Choi IG, Kim KH (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour Technol 100:1285–1290. doi:10.1016/j.biortech.2008.09.010

    Google Scholar 

  31. Imai M, Ikari K, Suzuki I (2004) High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochem Eng J 17:79–83. doi:10.1016/S1369-703X(03)00141-4

    Google Scholar 

  32. Zhu S, Wu Y, Yu Z, Wang C, Yu F, Jin S, Ding Y, Chi R, Liao J, Zhang Y (2006) Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw. Biosyst Eng 93:279–283. doi:10.1016/j.biosystemseng.2005.11.013

    Google Scholar 

  33. Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33. doi:10.1002/(SICI)1097-0290(19991005)65:1<24::AID-BIT4>3.0.CO;2-2

    Google Scholar 

  34. Mosier NS, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch R (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.1016/j.biortech.2004.06.025

    Google Scholar 

  35. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966. doi:10.1016/j.biortech.2005.01.010

    Google Scholar 

  36. Zhao XB, Cheng KK, Liu DH (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82:815–827. doi:10.1007/s00253-009-1883-1

    Google Scholar 

  37. Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. doi:10.1016/j.biortech.2010.01.088

    Google Scholar 

  38. Tomas-Pejo E, Olive JM, Ballesteros M (2008) Realistic approach for full-scale bioethanol production from lignocellulose: a review. J Sci Ind Res 67:874–884

    Google Scholar 

  39. McMillan JD (1994) Pretreatment of lignocelluloses biomass. In: Himmel ME, Baker JO, Overend RP (eds) Conversion of hemicellulose hydrolyzates to ethanol. Am Chem Soc Symp, Washington, pp 292–324

    Google Scholar 

  40. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. doi:10.3390/ijms9091621

    Google Scholar 

  41. Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33. doi:10.1016/0960-8524(95)00122-0

    Google Scholar 

  42. Pan XJ, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861. doi:10.1002/bit.20905

    Google Scholar 

  43. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906. doi:10.1016/j.biortech.2009.10.066

    Google Scholar 

  44. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376. doi:10.1002/bit.22179

    Google Scholar 

  45. Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 57:191–202. doi:10.1007/s001070050039

    Google Scholar 

  46. Biermann CJ, Schultz TP, McGinnis GD (1984) Rapid steam hydrolysis/extraction of mixed hardwoods as a biomass pretreatment. J Wood Chem Technol 4:111–128. doi:10.1080/02773818408062286

    Google Scholar 

  47. Saska M, Ozer E (1995) Aqueous extraction of sugarcane bagasse hemicellulose and production of xylose syrup. Biotechnol Bioeng 45:517–523. doi:10.1002/bit.260450609

    Google Scholar 

  48. Ehara K, Saka S (2005) Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments. J Wood Sci 51:148–153. doi:10.1007/s10086-004-0626-2

    Google Scholar 

  49. Peterson AA, Vogel F, Lachance RP, Forling M, Antal J, Micheal WT (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65. doi:10.1039/B810100K

    Google Scholar 

  50. Kumar S (2013) Sub- and supercritical water technology for biofuels. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 147–183

    Google Scholar 

  51. Pasquini D, Pimenta MTB, Ferreira LH, da Silva Curvelo AA (2005) Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol-water mixtures and carbon dioxide at high pressures. J Supercrit Fluid 36:31–39. doi:10.1016/j.supflu.2005.03.004

    Google Scholar 

  52. Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403. doi:10.1016/j.cej.2009.10.061

    Google Scholar 

  53. Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenerg 33:88–96. doi:10.1016/j.biombioe.2008.04.016

    Google Scholar 

  54. Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. Bioenerg Res 5:1043–1066. doi:10.1007/s12155-012-9208-0

    Google Scholar 

  55. Wyman CE, Hinman ND (1990) Ethanol: fundamentals of production from renewable feedstocks and use as a transportation fuel. Appl Biochem Biotechnol 24–25:735–753

    Google Scholar 

  56. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266. doi:10.1007/s00253-003-1444-y

    Google Scholar 

  57. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146. doi:10.1016/j.cbpa.2006.02.035

    Google Scholar 

  58. Boominathan K, Reddy CA (1992) cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium. PNAS 89:5586–5590

    Google Scholar 

  59. Azzam AM (1989) Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B 24:421–433. doi:10.1080/03601238909372658

    Google Scholar 

  60. Couto SR, Sanroman MA (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 76:291–302. doi:10.1016/j.jfoodeng.2005.05.022

    Google Scholar 

  61. Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179. doi:10.1016/S1369-703X(02)00129-8

    Google Scholar 

  62. Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzym Microb Tech 18:312–331. doi:10.1016/0141-0229(95)00157-3

    Google Scholar 

  63. Fukuda H, Kondo A, Tamalampudi S (2009) Bioenergy: sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochem Eng J 44:2–12. doi:10.1016/j.bej.2008.11.016

    Google Scholar 

  64. Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzym Microb Tech 43:115–119. doi:10.1016/j.enzmictec.2008.03.001

    Google Scholar 

  65. Hahn-Hagerdal B, Jeppsson H, Skoog K, Prior BA (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzym Microb Tech 16:933–943. doi:10.1016/0141-0229(94)90002-7

    Google Scholar 

  66. Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143. doi:10.1007/s00253-006-0402-x

    Google Scholar 

  67. Bisaria VS (1991) Bioprocessing of agro-residue to glucose and chemicals. In: Martin AM (ed) Bioconversion of waste materials to industrial products. Elsevier, London, pp 187–223

    Google Scholar 

  68. Jarboea LR, Shanmugama KT, Ingram LO (2007) Ethanol. In: Majumder-Russell D (ed) Encyclopedia of microbiology. Elsevier, New York

    Google Scholar 

  69. Gutierrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1: an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164. doi:10.1016/j.jbiotec.2005.07.003

    Google Scholar 

  70. Gutierrez T, Buszko ML, Ingram LO, Preston JF (2002) Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Appl Biochem Biotechnol 98–100:327–340. doi:10.1385/ABAB:98-100:1-9:327

    Google Scholar 

  71. Georgieva TI, Skiadas IV, Ahring BK (2007) Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: modeling and simulation. Biotechnol Bioeng 98:1161–1170. doi:10.1002/bit.21536

    Google Scholar 

  72. Cook GM, Morgan HW (1994) Hyperbolic growth of Thermoanaerobacter thermohydrosulfuricus (Clostridium thermohydrosulfuricum) increases ethanol production in pH-controlled batch culture. Appl Microbiol Biotechnol 41:84–89. doi:10.1007/BF00166086

    Google Scholar 

  73. Baskaran S, Ahn HJ, Lynd LR (1995) Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol Prog 11:276–281. doi:10.1021/bp00033a006

    Google Scholar 

  74. Lamed R, Zeikus JG (1980) Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol 141:1251–1257

    Google Scholar 

  75. Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119

    Google Scholar 

  76. Avci A, Donmez S (2006) Effect of zinc on ethanol production by two Thermoanaerobacter strains. Process Biochem 41:984–989. doi:10.1016/j.procbio.2005.11.007

    Google Scholar 

  77. Houghton TP, Thompson DN, Hess JR, Lacey JA, Wolcot MP, Schirp A, Englund K, Dostal D, Loge F (2004) Fungal upgrading of wheat straw for straw-thermoplastics production. Appl Biochem Biotechnol 113:71–93

    Google Scholar 

  78. Biely P, Kremnicky L (1998) Yeasts and their enzyme systems degrading cellulose, hemicelluloses and pectin. Food Technol Biotechnol 36:305–312

    Google Scholar 

  79. Watari J, Takata Y, Ogawa M, Sahara H, Koshino S, Onnela ML, Airaksinen U, Jaatinen R, Penttila M, Keranen S (1994) Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10:211–225

    Google Scholar 

  80. Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sust Energ Rev 14:334–343. doi:10.1016/j.rser.2009.08.012

    Google Scholar 

  81. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. doi:10.1021/cr068360d

    Google Scholar 

  82. Kruse A (2008) Review: supercritical water gasification. Biofuels Bioprod Bioref 2:415–437. doi:10.1002/bbb.93

    Google Scholar 

  83. Fang Z, Sato T, Smith RL Jr, Inomata H, Arai K, Kozinski JA (2008) Reaction chemistry and phase behaviour of lignin in high-temperature supercritical water. Bioresour Technol 99:3424–3430. doi:10.1016/j.biortech.2007.08.008

    Google Scholar 

  84. Susanti RF, Dianningrum LW, Yum T, Kim Y, Lee BG, Kim J (2012) High-yield hydrogen production from glucose by supercritical water gasification without added catalyst. Int J Hydrogen Energ 37:11677–11690. doi:10.1016/j.ijhydene.2012.05.087

    Google Scholar 

  85. Fang Z, Minowa T, Fang C, Smith RL Jr, Inomata H, Kozinski JA (2008) Catalytic hydrothermal gasification of cellulose and glucose. Int J Hydrogen Energ 33:981–990. doi:10.1016/j.ijhydene.2007.11.023

    Google Scholar 

  86. Azadi P, Farnood R (2011) Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes. Int J Hydrogen Energ 36:9529–9541. doi:10.1016/j.ijhydene.2011.05.081

    Google Scholar 

  87. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73. doi:10.1016/S1364-0321(99)00007-6

    Google Scholar 

  88. Maschio G, Koufopanos C, Lucchesi A (1992) Pyrolysis, a promising route for biomass utilization. Bioresour Technol 42:219–231. doi:10.1016/0960-8524(92)90025-S

    Google Scholar 

  89. Zheng CY, Tao HX, Xie XA (2013) Distribution and characterizations of liquefaction of celluloses in sub- and super-critical ethanol. Bioresources 8:648–662

    Google Scholar 

  90. Portofino S, Donatelli A, Iovane P, Innella C, Civita R, Martino M, Matera DA, Russo A, Cornacchia G, Galvagno S (2013) Steam gasification of waste tyre: influence of process temperature on yield and product composition. Waste Manage 33:672–678. doi:10.1016/j.wasman.2012.05.041

    Google Scholar 

  91. Resende FLP, Fraley SA, Berger MJ, Savage PE (2008) Noncatalytic gasification of lignin in supercritical water. Energ Fuel 22:1328–1324. doi:10.1021/ef700574k

    Google Scholar 

  92. Elliott DC (2008) Review: catalytic hydrothermal gasification of biomass. Biofuels, Bioprod Bioref 2:254–265. doi:10.1002/bbb.74

    Google Scholar 

  93. Bermejo MD, Cocero MJ (2006) Supercritical water oxidation: a technical review. AIChE J 52:3933–3951. doi:10.1002/aic.10993

    Google Scholar 

  94. Zhang L, Xu C, Champagne P (2012) Activity and stability of a novel Ru modified Ni catalyst for hydrogen generation by supercritical water gasification of glucose. Fuel 96:541–545. doi:10.1016/j.fuel.2012.01.066

    Google Scholar 

  95. Lu Y, Li S, Guo L, Zhang X (2010) Hydrogen production by biomass gasification in supercritical water over Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts. Int J Hydrogen Energ 35:7161–7168. doi:10.1016/j.ijhydene.2009.12.047

    Google Scholar 

  96. Azadi P, Afif E, Azadi F, Farnood R (2012) Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose. Green Chem 14:1766–1777. doi:10.1039/C2GC16378K

    Google Scholar 

  97. Azadi P, Khan S, Strobel F, Azadi F, Farnood R (2012) Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts. Appl Catal B Environ 117–118:330–338. doi:10.1016/j.apcatb.2012.01.035

    Google Scholar 

  98. Osada M, Sato M, Arai K, Shirai M (2006) Stability of supported ruthenium catalysts for lignin gasification in supercritical water. Energ Fuel 20:2337–2343. doi:10.1021/ef060356h

    Google Scholar 

  99. Yamaguchi A, Hiyoshi N, Sato O, Osada M, Shirai M (2008) Lignin gasification over supported ruthenium trivalent salts in supercritical water. Energ Fuel 22:1485–1492. doi:10.1021/ef8001263

    Google Scholar 

  100. Furusawa T, Sato T, Sugito H, Miura Y, Ishiyama Y, Sato M, Itoh N, Suzuki N (2007) Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water. Int J Hydrogen Energ 32:699–704. doi:10.1016/j.ijhydene.2006.08.001

    Google Scholar 

  101. Madenoglu TG, Boukis N, Saglam M, Yuksel M (2011) Supercritical water gasification of real biomass feedstocks in continuous flow system. Int J Hydrogen Energ 36:14408–14415. doi:10.1016/j.ijhydene.2011.08.047

    Google Scholar 

  102. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098. doi:10.1039/C2CS35188A

    Google Scholar 

  103. Onwudili JA, Williams PT (2013) Hydrogen and methane selectivity during alkaline supercritical water gasification of biomass with ruthenium-alumina catalyst. Appl Catal B Environ 132–133:70–79. doi:10.1016/j.apcatb.2012.11.033

    Google Scholar 

  104. Lu Y, Zhao L, Guo L (2011) Technical and economic evaluation of solar hydrogen production by supercritical water gasification of biomass in China. Int J Hydrogen Energ 36:14349–14359. doi:10.1016/j.ijhydene.2011.07.138

    Google Scholar 

  105. Nzihou A, Flamant G, Stanmore B (2012) Synthetic fuels from biomass using concentrated solar energy: a review. Energy 42:121–131. doi:10.1016/j.energy.2012.03.077

    Google Scholar 

  106. Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sust Energ Rev 15:4255–4273. doi:10.1016/j.rser.2011.07.124

    Google Scholar 

  107. Heiskanen H, Virkajarvi I, Viikari L (2007) The effects of syngas composition on the growth and product formation of Butyribacterium methylotrophicum. Enzyme Microb Tech 41:362–367. doi:10.1016/j.enzmictec.2007.03.004

    Google Scholar 

  108. Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206. doi:10.1016/j.copbio.2007.03.008

    Google Scholar 

  109. Daniell J, Kopke M, Simpson SD (2012) Commercial biomass syngas fermentation. Energies 5:5372–5417. doi:10.3390/en5125372

    Google Scholar 

  110. Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS (2010) Alkalibaculum bacchii gen. nov., sp. nov., a CO-oxidizing, ethanol producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 60:2483–2489. doi:10.1099/ijs.0.018507-0

    Google Scholar 

  111. Liu K, Atiyeh HK, Tanner RS, Wilkins MR, Huhnke RL (2012) Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchii. Bioresour Technol 104:336–341. doi:10.1016/j.biortech.2011.10.054

    Google Scholar 

  112. Rajagopalan S, Datar RP, Lewis RS (2002) Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenerg 23:487–493. doi:10.1016/S0961-9534(02)00071-5

    Google Scholar 

  113. Cotter JL, Chinn MS, Grunden AM (2009) Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzym Microb Tech 44:281–288. doi:10.1016/j.enzmictec.2008.11.002

    Google Scholar 

  114. Guo Y, Xu J, Zhang Y, Xu H, Yuan Z, Li D (2010) Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour Technol 101:8784–8789. doi:10.1016/j.biortech.2010.06.072

    Google Scholar 

  115. Abubackar HN, Veiga MC, Kennes C (2012) Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract. Bioresour Technol 114:518–522. doi:10.1016/j.biortech.2012.03.027

    Google Scholar 

  116. Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091. doi:10.1099/ijs.0.63482-0

    Google Scholar 

  117. Mohammadi M, Younesi H, Najafpour G, Mohamed AR (2012) Sustainable ethanol fermentation from synthesis gas by Clostridium ljungdahlii in a continuous stirred tank bioreactor. J Chem Technol Biotechnol 87:837–843. doi:10.1002/jctb.3712

    Google Scholar 

  118. Younesi H, Najafpour G, Mohamed AR (2006) Liquid fuel production from synthesis gas via fermentation process in a continuous tank bioreactor (CSTBR) using Clostridium ljungdahlii. Iran J Biotechnol 4:45–53

    Google Scholar 

  119. Saxena J, Tanner RS (2012) Optimization of a cornsteep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. World J Microbiol Biotechnol 28:1553–1561. doi:10.1007/s11274-011-0959-0

    Google Scholar 

  120. Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by Clostridium ragsdalei. Bioresour Technol 102:5794–5799. doi:10.1016/j.biortech.2011.02.032

    Google Scholar 

  121. Kundiyana DK, Huhnke RL, Wilkins MR (2010) Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations. J Biosci Bioeng 109:492–498. doi:10.1016/j.jbiosc.2009.10.022

    Google Scholar 

  122. Ragsdale SW (2009) Nickel-based enzyme systems. J Biol Chem 284:18571–18575. doi:10.1074/jbc.R900020200

    Google Scholar 

  123. Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Bioref 5:93–114. doi:10.1002/bbb.256

    Google Scholar 

  124. Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101:5013–5022. doi:10.1016/j.biortech.2009.12.098

    Google Scholar 

  125. Kundiyana DK, Huhnke RL, Maddipati P, Atiyeh HK, Wilkins MR (2010) Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresour Technol 101:9673–9680. doi:10.1016/j.biortech.2010.07.054

    Google Scholar 

  126. Klasson KT, Ackerson CMD, Clausen EC, Gaddy JL (1993) Biological conversion of coal and coal-derived synthesis gas. Fuel 72:1673–1678. doi:10.1016/0016-2361(93)90354-5

    Google Scholar 

  127. Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15:834–844. doi:10.1021/bp990108m

    Google Scholar 

  128. Munasinghe PC, Khanal SK (2012) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modelling using a composite hollow fiber (CHF) membrane bioreactor. Bioresour Technol 122:130–136. doi:10.1016/j.biortech.2012.03.053

    Google Scholar 

  129. Hickey R, Datta R, Tsai SP, Basu R (2011) Membrane supported bioreactor for conversion of syngas components to liquid products. U.S. Patent 2011/0256597 A1, 20 October 2011

  130. Tsai SP, Datta R, Basu R, Yoon SH (2009) Syngas conversion system using asymmetric membrane and anaerobic microorganism. U.S. Patent 2009/0215163 A1, 29 August 2009

  131. Xu D, Lewis RS (2012) Syngas fermentation to biofuels: effects of ammonia impurity in raw syngas on hydrogenase activity. Biomass Bioenerg 45:303–310. doi:10.1016/j.biombioe.2012.06.022

    Google Scholar 

  132. Xu D, Tree DR, Lewis RS (2011) The effects of syngas impurities on syngas fermentation to liquid fuels. Biomass Bioenerg 35:2690–2696. doi:10.1016/j.biombioe.2011.03.005

    Google Scholar 

  133. Ahmed A, Cateni BG, Huhnke RL, Lewis SR (2006) Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass Bioenerg 30:665–672. doi:10.1016/j.biombioe.2006.01.007

    Google Scholar 

  134. Calli B, Mertoglu B, Inanc B, Yenigun O (2005) Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochem 40:1285–1292. doi:10.1016/j.procbio.2004.05.008

    Google Scholar 

  135. Saxena J, Tanner RS (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J Ind Microbiol Biotechnol 38:513–521. doi:10.1007/s10295-010-0794-6

    Google Scholar 

  136. Panneerselvam A, Wilkins MR, Delorme MJM, Atiyeh HK, Huhnke RL (2009) Effects of various reducing agents on syngas fermentation by “Clostridium ragsdalei”. Biol Eng 2:135–144

    Google Scholar 

  137. Dry ME (2004) Present and future applications of the Fischer–Tropsch process. Appl Catal A 276:1–3. doi:10.1016/j.apcata.2004.08.014

    Google Scholar 

  138. Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energ Fuel 22:814–839. doi:10.1021/ef700411x

    Google Scholar 

  139. Li F, Jiang D, Zeng XC, Chen Z (2012) Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study. Nanoscale 4:1123–1129. doi:10.1039/c1nr11121c

    Google Scholar 

  140. Choi Y, Liu P (2009) Mechanism of ethanol synthesis from syngas on Rh (111). J Am Chem Soc 131:13054–13061. doi:10.1021/ja903013x

    Google Scholar 

  141. Spivey JJ, Egbebi A (2007) Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem Soc Rev 36:1514–1528. doi:10.1039/B414039G

    Google Scholar 

  142. Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511. doi:10.1038/nmat1916

    Google Scholar 

  143. Fan Z, Chen W, Pan X, Bao X (2009) Catalytic conversion of syngas into C2-oxygenates over Rh-based catalysts—effects of carbon supports. Catal Today 147:86–93. doi:10.1016/j.cattod.2009.03.004

    Google Scholar 

  144. Haider MA, Gogate MR, Davis RJ (2009) Fe-promotion of supported Rh catalysts for different conversion of syngas to ethanol. J Catal 261:9–16. doi:10.1016/j.jcat.2008.10.013

    Google Scholar 

  145. Mei D, Rousseau R, Kathmann SM, Glezakou VA, Engelhard MH, Jiang W, Wang C, Gerber MA, White JF, Stevens DJ (2010) Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: a combined experimental and theoretical modeling study. J Catal 271:325–342. doi:10.1016/j.jcat.2010.02.020

    Google Scholar 

  146. Han L, Mao D, Yu J, Guo Q, Lu G (2012) Synthesis of C2-oxygenates from syngas over Rh-based catalyst supported on SiO2, TiO2 and SiO2-TiO2 mixed mode. Catal Commun 23:20–24. doi:10.1016/j.catcom.2012.02.032

    Google Scholar 

  147. Chen G, Guo CY, Zhang X, Huang Z, Yuan G (2011) Direct conversion of syngas to ethanol over Rh/Mn supported on modified SBA-15 molecular sieves: effect of supports. Fuel Process Technol 92:456–461. doi:10.1016/j.fuproc.2010.10.012

    Google Scholar 

  148. Cosultchi A, Parez-Luna M, Morales-Serna JA, Salmon M (2012) Charaterization of modified Fischer–Tropsch catalysts promoted with alkaline metals for higher alcohol synthesis. Catal Lett 142:368–377

    Google Scholar 

  149. Surisetty VR, Dalai AK, Kozinski J (2010) Synthesis of higher alcohols from synthesis gas over Co-promoted alkali-modified MoS2 catalysts supported on MWCNTs. Appl Catal A Gen 385:153–162. doi:10.1016/j.apcata.2010.07.009

    Google Scholar 

  150. Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X (2012) Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. J Am Chem Soc 134:13922–13925. doi:10.1021/ja3034153

    Google Scholar 

  151. Yang G, San X, Jiang N, Tanaka Y, Li X, Jin Q, Tao K, Meng F, Tsubaki N (2011) A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with modified zeolite and Cu/ZnO catalysts. Catal Today 164:425–428. doi:10.1016/j.cattod.2010.10.027

    Google Scholar 

  152. Liu Y, Murata K, Inaba M, Takahara I (2013) Synthesis of ethanol from methanol and syngas through an indirect route containing methanol dehydrogenation, DME carbonylation and methyl acetate hydrogenolysis. Fuel Process Technol 110:206–213. doi:10.1016/j.fuproc.2012.12.016

    Google Scholar 

  153. Sai Prasad PS, Bae JW, Kang SH, Lee YJ, Jun KW (2008) Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts: the superiority of ferrierite over other zeolites. Fuel Process Technol 89:1281–1286. doi:10.1016/j.fuproc.2008.07.014

    Google Scholar 

  154. Erena J, Garona R, Arandes JM, Aguayo AT, Bilbao J (2005) Direct synthesis of dimethyl ether from (H2 + CO) and (H2 + CO2) feeds. Effect of feed composition. Int J Chem React Eng 3:1–15. doi:10.2202/1542-6580.1295

    Google Scholar 

  155. Aguayo AT, Erena J, Sierra I, Olazar M, Bilbao J (2005) Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2. Catal Today 106:265–270. doi:10.1016/j.cattod.2005.07.144

    Google Scholar 

  156. Zeng C, Sun J, Yang G, Ooki I, Hayashi K, Yoneyama Y, Taguchi A, Abe T, Tsubaki N (2013) Highly selective and multifunctional Cu/ZnO/Zeolite catalyst for one-step dimethyl ether synthesis: preparing catalyst by bimetallic physical sputtering. Fuel 112:140–144. doi:10.1016/j.fuel.2013.05.026

    Google Scholar 

  157. Moradi GR, Nosrati S, Yaripor F (2007) Effects of hybrid catalysts preparation method upon direct synthesis of dimethyl ether from synthesis gas. Catal Commun 8:598–606. doi:10.1016/j.catcom.2006.08.023

    Google Scholar 

  158. Feng W, Yao J, Wu H, Ji P (2012) Synthesis of bioethanol from biomass-derived syngas over carbon nanotube/silica supported catalyst. Biotechnol Adv 30:874–878. doi:10.1016/j.biotechadv.2012.01.017

    Google Scholar 

  159. Surisetty VR, Dalai AK, Kozinski J (2010) Effect of Rh promoter on MWCNT-supported alkali modified MoS2 catalysts for higher alcohols synthesis from CO hydrogenation. Appl Catal A Gen 381:282–288. doi:10.1016/j.apcata.2010.04.036

    Google Scholar 

  160. Zhang X, Liu Y, Liu G, Tao K, Jin Q, Meng F, Wang D, Tsubaki N (2012) Product distributions including hydrocarbon and oxygenates of Fischer–Tropsch synthesis over mesoporous MnO2-supported Fe catalyst. Fuel 92:122–129. doi:10.1016/j.fuel.2011.07.041

    Google Scholar 

  161. Ma W, Kugler EL, Dadyburjor DB (2011) Promotional effect of copper on activity and selectivity to hydrocarbons and oxygenates for Fischer–Tropsch synthesis over potassium-promoted iron catalysts supported on activated carbon. Energ Fuel 25:1931–1938. doi:10.1021/ef101720c

    Google Scholar 

  162. Subramanian ND, Gao J, Mo X, Goodwin JG Jr, Torres W, Spivey JJ (2010) La and/or V oxide promoted Rh/SiO2 catalysts: effect of temperature, H2/CO ratio, space velocity and pressure on ethanol selectivity from syngas. J Catal 272:204–209. doi:10.1016/j.jcat.2010.03.019

    Google Scholar 

  163. Chiang SW, Chang CC, Shie JL, Chang CY, Ji DR, Tseng JY, Chang CF, Chen YH (2012) Synthesis of alcohols and alkanes from CO and H2 over MoS2/γ-Al2O3 catalyst in a packed bed with continuous flow. Energies 5:4147–4164. doi:10.3390/en5104147

    Google Scholar 

  164. Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727. doi:10.1039/C1CS15008A

    Google Scholar 

  165. Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205. doi:10.1016/j.cattod.2009.07.075

    Google Scholar 

  166. Takagawa M, Okamoto A, Fujimura H, Izawa Y, Arakawa H (1998) Ethanol synthesis from carbon dioxide and hydrogen. Stud Surf Sci Catal 114:525–528. doi:10.1016/S0167-2991(98)80812-4

    Google Scholar 

  167. Arakawa H (1998) Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO2. Stud Surf Sci Catal 114:19–30. doi:10.1016/S0167-2991(98)80723-4

    Google Scholar 

  168. Kusama H, Okabe K, Sayama K, Arakawa H (1997) Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe-SiO2 catalysts. Catal Today 22:343–348. doi:10.1016/S0360-5442(96)00095-3

    Google Scholar 

  169. Inui T, Yamamoto T (1998) Effective synthesis of ethanol from CO2 on polyfunctional composite catalysts. Catal Today 45:209–214. doi:10.1016/S0920-5861(98)00217-X

    Google Scholar 

  170. Heijden HV, Ptasinski KJ (2012) Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis. Energy 46:200–210. doi:10.1016/j.energy.2012.08.036

    Google Scholar 

  171. Wei L, Pordesimo LO, Igathinathane C, Batchelor WD (2009) Process engineering evaluation of ethanol production from wood through bioprocessing and chemical catalysis. Biomass Bioenerg 33:255–266. doi:10.1016/j.biombioe.2008.05.017

    Google Scholar 

  172. Mohanty P, Nanda S, Pant KK, Naik S, Kozinski JA, Dalai AK (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J Anal Appl Pyrol. doi:10.1016/j.jaap.2013.05.022

    Google Scholar 

  173. Boucher ME, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenerg 19:337–350. doi:10.1016/S0961-9534(00)00043-X

    Google Scholar 

  174. He R, Ye XP, English BC, Satrio JA (2009) Influence of pyrolysis condition on switchgrass bio-oil yield and physicochemical properties. Bioresour Technol 100:5305–5311. doi:10.1016/j.biortech.2009.02.069

    Google Scholar 

  175. Ba TA, Chaala M, Garcia-Perez D, Rodrigue RC (2004) Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energ Fuel 18:704–712. doi:10.1021/ef030118b

    Google Scholar 

  176. Joshi J, Lawal A (2012) Hydrodeoxygenation of pyrolysis oil in a microreactor. Chem Eng Sci 74:1–8. doi:10.1016/j.ces.2012.01.052

    Google Scholar 

  177. Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials—a review. Bioresour Technol 68:71–77. doi:10.1016/S0960-8524(98)00086-8

    Google Scholar 

  178. Ringer M, Putsche V, Scahill J (2013) Large-scale pyrolysis oil production: a technology assessment and economic analysis. NREL/TP-510-37779; 2006. http://www.nrel.gov/docs/fy07osti/37779.pdf. Accessed 26 March 2013

  179. E4tech (2009) Review of technologies for gasification of biomass and wastes. NNFCC Project 09/008

  180. Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201. doi:10.1002/anie.200604504

    Google Scholar 

  181. Sharma RK, Bakhshi NN (1991) Catalytic upgrading of biomass-derived oils to transportation fuels and chemicals. Can J Chem Eng 69:1071–1081. doi:10.1002/cjce.5450690505

    Google Scholar 

  182. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A Gen 407:1–19. doi:10.1016/j.apcata.2011.08.046

    Google Scholar 

  183. Couper JR, Penney WR, Fair JR, Walas SM (2010) Chemical process equipment-selection and design, 2nd edn. Elsevier, USA

    Google Scholar 

  184. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energ Fuel 18:590–598. doi:10.1021/ef034067u

    Google Scholar 

  185. Agblevor FA, Besler S (1996) Inorganic compounds in biomass feedstocks. 1. Effect on the quality of fast pyrolysis oils. Energ Fuel 10:293–298. doi:10.1021/ef950202u

    Google Scholar 

  186. Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils—state of the art for the end users. Energ Fuel 13:914–921. doi:10.1021/ef980272b

    Google Scholar 

  187. Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energ Fuel 11:1081–1091. doi:10.1021/ef9700339

    Google Scholar 

  188. Oasmaa A, Sipila K, Solantausta Y, Kuoppala E (2005) Quality improvement of pyrolysis liquids: effect of light volatiles on the stability of pyrolysis liquids. Energ Fuel 19:2556–2561. doi:10.1021/ef0400924

    Google Scholar 

  189. Rajvanshi AK (1986) Biomass gasification. In: Goswami DY (ed) Alternative energy in agriculture. CRC Press, New York, pp 83–102

    Google Scholar 

  190. Higman C, van der Burgt M (2008) Gasification. Elsevier, London

    Google Scholar 

  191. Roddy DJ, Whitton CM (2012) Comprehensive renewable energy. Biomass gasification and pyrolysis. Elsevier, New York, pp 133–137

    Google Scholar 

  192. Delgado J, Aznar MP, Corella J (1997) Biomass gasification with steam in fluidized bed: effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Ind Eng Chem Res 36:1535–1543. doi:10.1021/ie960273w

    Google Scholar 

  193. Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX (2004) An experimental study on biomass air–steam gasification in a fluidized bed. Bioresour Technol 95:95–101. doi:10.1016/j.biortech.2004.02.003

    Google Scholar 

  194. Franco C, Pinto F, Gulyurtlu I, Cabrita I (2003) The study of reactions influencing the biomass steam gasification process. Fuel 82:835–842. doi:10.1016/S0016-2361(02)00313-7

    Google Scholar 

  195. Moon J, Lee J, Lee U, Hwang J (2013) Transient behavior of devolatilization and char reaction during steam gasification of biomass. Bioresour Technol 133:429–436. doi:10.1016/j.biortech.2013.01.148

    Google Scholar 

  196. Weerachanchai P, Horio M, Tangsathitkulchai C (2009) Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass. Bioresour Technol 100:1419–1427. doi:10.1016/j.biortech.2008.08.002

    Google Scholar 

  197. Fushimi C, Araki K, Yamaguchi Y, Tsutsumi A (2003) Effect of heating rate on steam gasification of biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Ind Eng Chem Res 42:3929–3936. doi:10.1021/ie0300575

    Google Scholar 

  198. Zhang L, Xu CC, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energ Convers Manag 51:969–982. doi:10.1016/j.enconman.2009.11.038

    Google Scholar 

  199. McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63. doi:10.1016/S0960-8524(01)00120-1

    Google Scholar 

  200. van der Drift A, Boerrigter H (2013) Synthesis gas from biomass for fuels and chemicals. ECN-C-06-001; 2006. ftp://www.nrg-nl.com/pub/www/library/report/2006/c06001.pdf. Accessed 26 March 2013

  201. Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N (2008) Direct liquefaction of biomass. Chem Eng Technol 31:667–677. doi:10.1002/ceat.200800077

    Google Scholar 

  202. Balat M (2008) Mechanisms of thermochemical biomass conversion processes. Part 3: reactions of liquefaction. Energ Source A 30:649–659. doi:10.1080/10407780600817592

    Google Scholar 

  203. Xu C, Etcheverry T (2008) Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts. Fuel 87:335–345. doi:10.1016/j.fuel.2007.05.013

    Google Scholar 

  204. Blaschek HP, Ezeji TC, Scheffran J (2010) Biofuels from agricultural wastes and byproducts. Blackwell, New York. doi:10.1002/9780813822716. ISBN 978-0-813-80252-7

    Google Scholar 

  205. Miller IJ, Fellows SK (1981) Liquefaction of biomass as a source of fuels or chemicals. Nature 289:398–399. doi:10.1038/289398a0

    Google Scholar 

  206. Zhong C, Wei X (2004) A comparative experimental study on the liquefaction of wood. Energy 29:1731–1741. doi:10.1016/j.energy.2004.03.096

    Google Scholar 

  207. Mun SP, Hassan EM (2004) Liquefaction of lignocellulosic biomass with mixtures of ethanol and small amounts of phenol in the presence of methanesulfonic acid catalyst. J Ind Eng Chem 10:722–727

    Google Scholar 

  208. Xu J, Jiang J, Dai W, Xu Y (2012) Liquefaction of sawdust in hot compressed ethanol for the production of bio-oils. Process Saf Environ 90:333–338. doi:10.1016/j.psep.2012.01.001

    Google Scholar 

  209. Krzan A, Kunaver M, Tisler V (2005) Wood liquefaction using dibasic organic acids and glycols. Acta Chim Slov 52:253–258

    Google Scholar 

  210. Liang L, Mao Z, Li Y, Wan C, Wang T, Zhang L, Zhang L (2006) Liquefaction of crop residues for polyol production. Bioresources 1:248–256

    Google Scholar 

  211. Food and Agriculture Organization of the United Nations, FAO (2008) The state of food and agriculture. Biofuels: prospects, risks, and opportunities. FAO, Rome

    Google Scholar 

  212. Borjesson P (2009) Good or bad bioethanol from a greenhouse gas perspective—what determines this? Appl Energ 86:589–594. doi:10.1016/j.apenergy.2008.11.025

    Google Scholar 

  213. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. doi:10.1126/science.1152747

    Google Scholar 

  214. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240. doi:10.1126/science.1151861

    Google Scholar 

  215. Shimada K, Hosoya S, Ikeda T (1997) Condensation reactions of softwood and hardwood lignin model compounds under organic acid cooking conditions. J Wood Chem Technol 17:57–72. doi:10.1080/02773819708003118

    Google Scholar 

  216. Balat M (2009) Gasification of biomass to produce gaseous products. Energ Source A 31:516–526. doi:10.1080/15567030802466847

    Google Scholar 

  217. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016

    Google Scholar 

  218. Muthaiyan A, Ricke SC (2010) Current perspectives on detection of microbial contamination in bioethanol fermentors. Bioresour Technol 101:5033–5042. doi:10.1016/j.biortech.2009.11.005

    Google Scholar 

  219. Heist P (2011) Identifying, controlling the most common microbial contaminants. Ethanol Producer Magazine; 2009. www.ethanolproducer.com/article.jsp?article_id=5464. Accessed 23 April 2011

  220. Basilio ACM, de Araujo PRL, de Morais JOF, da Silva Filho EA, de Morais Jr MA, Simoes DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56:322–326. doi:10.1007/s00284-007-9085-5

    Google Scholar 

  221. Grossman HL, Myers WR, Vreeland VJ, Bruehl R, Alper MD, Bertozzi CR, Clarke J (2004) Detection of bacteria in suspension by using a superconducting quantum interference device. PNAS 101:129–134. doi:10.1073/pnas.0307128101

    Google Scholar 

  222. Gloyna EF, Li L (1995) Supercritical water oxidation research and development update. Environ Prog 14:182–192. doi:10.1002/ep.670140318

    Google Scholar 

  223. Gaddy JL (1998) Biological production of acetic acid from waste gases with Clostridium ljungdahlii. U.S. Patent 5807722, 15 September 1998

  224. Zahn JA, Saxena J (2011) Novel ethanologenic species Clostridium coskatii. U.S. Patent 2011/0229947 A1, 22 September 2011

  225. Heijstra B, Kern E, Koepke M, Segovia S, Liew F (2012) Novel bacteria and methods of use thereof. Patent WO/2012/015317, 2 February 2012

  226. Kopke M, Mihalcea C, Bromley JC, Simpson SD (2011) Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:320–325. doi:10.1016/j.copbio.2011.01.005

    Google Scholar 

  227. Lu Q, Zhang J, Zhu XF (2008) Corrosion properties of bio-oil and its emulsions with diesel. Chin Sci Bull 53:3726–3734. doi:10.1007/s11434-008-0499-7

    Google Scholar 

  228. Czernik S, Johnson DK, Black S (1994) Stability of wood fast pyrolysis oil. Biomass Bioenerg 7:187–192. doi:10.1016/0961-9534(94)00058-2

    Google Scholar 

  229. Perez MG, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C (2006) Multiphase structure of bio-oils. Energ Fuel 20:364–375. doi:10.1021/ef050248f

    Google Scholar 

  230. Oasmaa A, Elliott DC, Korhonen J (2010) Acidity of biomass fast pyrolysis bio-oils. Energ Fuel 24:6548–6554. doi:10.1021/ef100935r

    Google Scholar 

  231. Wild PD (2011) Biomass pyrolysis for chemicals. Dissertation, University of Groningen. ISBN: 978-90-367-4994-7

  232. Verma M, Godbout S, Brar SK, Solomatnikova O, Lemay SP, Larouce JP (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng. doi:10.1155/2012/542426

    Google Scholar 

Download references

Acknowledgments

The authors express their acknowledgments towards the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chair (CRC) program and BioFuelNet Canada for the financial support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay K. Dalai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanda, S., Mohammad, J., Reddy, S.N. et al. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv. Bioref. 4, 157–191 (2014). https://doi.org/10.1007/s13399-013-0097-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-013-0097-z

Keywords

Navigation