Skip to main content
Log in

Highly efficient flexible optoelectronic devices using metal nanowire-conducting polymer composite transparent electrode

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Here, we report a comprehensive analysis of the electrical, optical, mechanical, and surface morphological properties of composite nanostrutures based on silver nanowires (AgNW) and PEDOT:PSS conducting polymer for the use as flexible and transparent electrodes. Compared to ITO or the single material of AgNW or PEDOT:PSS, the AgNW/PEDOT:PSS composite electrode showed high electrical conductivity with a low sheet resistance of 26.8 Ω/sq at 91% transmittance (at 550 nm), improves surface smoothness, and enhances mechanical properties assisted by an amphiphilic fluoro-surfactant. The polymeric light-emitting diodes (PLEDs) and organic solar cells (OSCs) using the AgNW/PEDOT:PSS composite electrode showed higher device performances than those with AgNW and PEDOT:PSS electrodes and excellent flexibility under bending test. These results indicates that the AgNW/PEDOT:PSS composite presented is a good candidate as next-generation transparent elelctrodes for applications into flexible optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).

    Article  Google Scholar 

  2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).

    Article  Google Scholar 

  3. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).

    Article  Google Scholar 

  4. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).

    Article  Google Scholar 

  5. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics. 3, 297 (2009).

    Article  Google Scholar 

  6. G. Li, R. Zhu, and Y. Yang, Nat. Photonics. 6, 153 (2012).

    Article  Google Scholar 

  7. M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. Serdar Sariciftci, and S. Bauer, Nat. Commun. 3, 770 (2012).

    Article  Google Scholar 

  8. J. H. Kim, J.-Y. Cho, J. Park, B. K. Lee, K.-H. Baek, H. Lee, and L.-M. Do, Electron. Mater. Lett. 10, 27 (2014).

    Article  Google Scholar 

  9. G.-P. Kim, B.-M. Park, and H.-J. Chang, Electron. Mater. Lett. 10, 491 (2014).

    Article  Google Scholar 

  10. R. G. Gordon, MRS Bull. 25, 52 (2000).

    Article  Google Scholar 

  11. E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, MRS Bull. 32, 242 (2007).

    Article  Google Scholar 

  12. Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, Thin Solid Films 394, 201 (2001).

    Article  Google Scholar 

  13. S.-I. Na, S.-S. Kim, J. Jo, and D.-Y. Kim, Adv. Mater. 20, 4061 (2008).

    Article  Google Scholar 

  14. C. Peng, Z. Jia, H. Neilson, T. Li, and J. Lou, Adv. Eng. Mater. 15, 250 (2013).

    Article  Google Scholar 

  15. J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, and F. Cacialli, J. Appl. Phys. 84, 6859 (1998).

    Article  Google Scholar 

  16. H. Kim, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett. 74, 3444 (1999).

    Article  Google Scholar 

  17. A. Chipman, Nature 449, 131 (2007).

    Article  Google Scholar 

  18. J. Zou, C.-Z. Li, C.-Y. Chang, H.-L. Yip, and A. K.-Y. Jen, Adv. Mater. 26, 3618 (2014).

    Article  Google Scholar 

  19. C. Zhang, D. Zhao, D. Hu, H. Kim, T. Ling, Y.-K. R. Wu, and L. J. Guo, Adv. Mater. 26, 5696 (2014).

    Article  Google Scholar 

  20. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 8, 689 (2008).

    Article  Google Scholar 

  21. M.-G. Kang, M.-S. Kim, J. Kim, and L. J. Guo, Adv. Mater. 20, 4408 (2008).

    Article  Google Scholar 

  22. W. Gaynor, S. Hofmann, M. Greyson Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lüssem, L. Müller-Meskamp, P. Peumans, and K. Leo, Adv. Mater. 25, 4006 (2013).

    Article  Google Scholar 

  23. Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, Synthetic Met. 87, 171 (1997).

    Article  Google Scholar 

  24. K. Fehse, K. Walzer, K. Leo, W. Löveninch, and A. Elschner, Adv. Mater. 19, 441 (2007).

    Article  Google Scholar 

  25. Z. Yu, L. Hu, Z. Liu, M. Sun, M. Wang, G. Grüner, and Q. Pei, Appl. Phys. Lett. 95, 203304 (2009).

    Article  Google Scholar 

  26. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, Nat. Photonics. 6, 105 (2012).

    Article  Google Scholar 

  27. K.-S. Liao, S. D. Yambem, A. Haldar, N. J. Alley, and S. A. Curran, Energies 3, 1212 (2010).

    Article  Google Scholar 

  28. R. Po, C. Carbonera, A. Bernardi, F. Tinti, and N. Camaioni, Sol. Energy Mater. Sol. C. 100, 97 (2012).

    Article  Google Scholar 

  29. T.-B. Song and N. Li, Electronics 3, 190 (2014).

    Article  Google Scholar 

  30. Y. Lee, T.-S. Kim, S.-Y. Min, W. Xu, S.-H. Jeong, H.-K. Seo, and T.-W. Lee, Adv. Mater. 26, 8010 (2014).

    Article  Google Scholar 

  31. C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, Nat. Commun. 5, 3121 (2014).

    Google Scholar 

  32. T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, and K. Suganuma, Nano Res. 4, 1215 (2011).

    Article  Google Scholar 

  33. Z. M. Beiley, M. G. Christoforo, P. Gratia, A. R. Bowring, P. Eberspacher, G. Y. Margulis, C. Cabanetos, P. M. Beaujuge, A. Salleo, and M. D. McGehee, Adv. Mater. 25, 7020 (2013).

    Article  Google Scholar 

  34. S. J. Lee, Y.-H. Kim, J. K. Kim, H. Baik, J. H. Park, J. Lee, J. Nam, J. H. Park, T.-W. Lee, G.-R. Yi, and J. H. Cho, Nanoscale 6, 11828 (2014).

    Article  Google Scholar 

  35. L. Li, Z. Yu, W. Hu, C.-H. Chang, Q. Chen, and Q. Pei, Adv. Mater. 23, 5563 (2011).

    Article  Google Scholar 

  36. S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, S.-H. Kwon, Y. C. Park, S.-H. Jin, J.-W. Kang, S. Jo, and C. S. Kim, Sci. Rep. 4, 4788 (2014).

    Google Scholar 

  37. J. Liang, L. Li, X. Niu, Z. Yu, and Q. Pei, Nat. Photonics. 7, 817 (2013).

    Article  Google Scholar 

  38. S. Kirchmeyer and K. Reuter, J. Mater. Chem. 15, 2077 (2005).

    Article  Google Scholar 

  39. N. Kim, B. H. Lee, D. Choi, G. Kim, H. Kim, J.-R. Kim, J. Lee, Y. H. Kahng, and K. Lee, Phys. Rev. Lett. 109, 106405 (2012).

    Article  Google Scholar 

  40. Y.-S. Hsiao, W.-T. Whang, C.-P. Chen, and Y.-C. Chen, J. Mater. Chem. 18, 5948 (2008).

    Article  Google Scholar 

  41. J.-R. Kim, J. H. Jung, W. S. Shin, W.-W. So, and S.-J. Moon, J. Nanosci. Nanotechnol. 11, 326 (2011).

    Article  Google Scholar 

  42. M. Vosgueritchian, D. J. Lipomi, and Z. Bao, Adv. Funct. Mater. 22, 421 (2012).

    Article  Google Scholar 

  43. Y. Xia, K. Sun, and J. Ouyang, Adv. Mater. 24, 2436 (2012).

    Article  Google Scholar 

  44. J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, Synthetic Met. 126, 311 (2002).

    Article  Google Scholar 

  45. S.-I. Na, G. Wang, S.-S. Kim, T.-W. Kim, S.-H. Oh, B.-K. Yu, T. Lee, and D.-Y. Kim, J. Mater. Chem. 19, 9045 (2009).

    Article  Google Scholar 

  46. D.J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander, and Z. Bao, Chem. Mater. 24, 373 (2011).

    Article  Google Scholar 

  47. L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, ACS Appl. Mater. Interfaces 3, 4075 (2011).

    Article  Google Scholar 

  48. W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, Adv. Mater. 23, 2905 (2011).

    Article  Google Scholar 

  49. D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, Nanoscale 5, 977 (2013).

    Article  Google Scholar 

  50. C.-H. Liu and X. Yu, Nanoscale Res. Lett. 6, 75 (2011).

    Article  Google Scholar 

  51. G. Y. Margulis, M. Greyson Christoforo, D. Lam, Z. M. Beiley, A. R. Bowring, C. D. Bailie, A. Salleo, and M. D. McGehee, Adv. Energy Mater. 3, 1657 (2013).

    Article  Google Scholar 

  52. R. Steyrleuthner, S. Bange, and D. Neher, J. Appl. Phys. 105, 064509 (2009).

    Article  Google Scholar 

  53. H. Cho, C. Yun, J.-W. Park, and S. Yoo, Org. Electron. 10, 1163 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Hoon Song.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, E.D., Nam, Y.S., Seo, H. et al. Highly efficient flexible optoelectronic devices using metal nanowire-conducting polymer composite transparent electrode. Electron. Mater. Lett. 11, 906–914 (2015). https://doi.org/10.1007/s13391-015-5120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5120-z

Keywords

Navigation