Skip to main content
Log in

Intercalation of biomolecules into NiAl-NO 3 layered double hydroxide films synthesized in situ on anodic alumina/aluminium support

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Layered double hydroxide (LDH) films were synthesized in situ on anodic alumina/aluminium (AAO/Al). Glucose oxidase (GOD) and L-ascorbic acid (vitamin C, VC) were intercalated respectively into the in-situ grown LDH films by anion-exchange in aqueous solutions. Dodecylsulfate (SDS) was used to expand the lamellar structure before GOD intercalation into the LDH film. The resulting products were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis (TGA). The results showed that VC and GOD were successfully intercalated into the in-situ synthesized LDH film. These biomolecules loaded LDH films could have potential applications in electrode modification, safe storage and effective delivery of bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Lee, S. W. Rhee, and D. Y. Jung, Chem. Mater. 16, 3774 (2004).

    Article  CAS  Google Scholar 

  2. E. Scavetta, D. Tonelli, A. Giorgetti, F. Nobili, R. Marassi, and M. Berrettoni, Electrochim. Acta 48, 1347 (2003).

    Article  CAS  Google Scholar 

  3. Z._H. Wang, X. Teng, and C. Lu, Analyst 137, 1876 (2012).

    Article  CAS  Google Scholar 

  4. J. H. Yang, S. Y. Lee, Y. S. Han, K. C. Park, and J. H. Choy, Bull. Korean Chem. Soc. 24, 499 (2003).

    Article  CAS  Google Scholar 

  5. S. J. Xia, Z. M. Ni, Q. Xu, B. X. Hu, and J. Hu, J. Solid State Chem. 181, 2610 (2008).

    Article  CAS  Google Scholar 

  6. H. H. Ai, X. T. Huang, Z. H. Zhu, J. P. Liu, Q. B. Chi, Y. Y. Li, Z. K. Li, and X. X. Ji, Biosens. Bioelectron. 24, 1048 (2008).

    Article  CAS  Google Scholar 

  7. S. N. Ding, D. Shan, T. Zhang, and Y. Z. Dou, J. Electroanal. Chem. 659, 1 (2011).

    Article  CAS  Google Scholar 

  8. C. Mousty, L. Vieille, and S. Cosnier, Biosens. Bioelectron. 22, 1733 (2007).

    Article  CAS  Google Scholar 

  9. A. Zebda, S. Tingry, C. Innocent, S. Cosnier, C. Forano, and C. Mousty, Electrochim. Acta 56, 10378 (2011).

    Article  CAS  Google Scholar 

  10. X. Chen, C. L. Fu, Y. Wang, W. S. Yang, and D. G. Evans, Biosens. Bioelectron. 24, 356 (2008).

    Article  CAS  Google Scholar 

  11. L. Guadagnini, A. Mignani, E. Scavetta, and D. Tonelli, Electrochim. Acta 55, 1217 (2010).

    Article  CAS  Google Scholar 

  12. E. Scavetta, L. Guadagnini, A. Mignani, and D. Tonelli, Electroanalysis 20, 2199 (2008).

    Article  CAS  Google Scholar 

  13. X. G. Kong, X. Y. Rao, J. B. Han, M. Wei, and X. Duan, Biosens. Bioelectron. 26, 549 (2010).

    Article  CAS  Google Scholar 

  14. X. X. Guo, F. Z. Zhang, D. G. Evans, and X. Duan, Chem. Commun. 46, 5197 (2010).

    Article  CAS  Google Scholar 

  15. C. Manzi-Nshuti, D. Y. Wang, J. M. Hossenlopp, and C. A. Wilkie, J. Mater. Chem. 18, 3091 (2008).

    Article  CAS  Google Scholar 

  16. M. Wei, X. F. Tian, J. He, M. Pu, G. Y. Rao, H. L. Yang, L. Yang, T. Liu, D. G. Evans, and X. Duan, Eur. J. Inorg. Chem. 17, 3442 (2006).

    Article  Google Scholar 

  17. Z. Lue, F. Z. Zhang, X. D. Lei, L. Yang, S. L. Xu, and X. Duan, Chem. Eng. Sci. 63, 4055 (2008).

    Article  Google Scholar 

  18. H. Y. Chen, F. Z. Zhang, S. S. Fu, and X. Duan, Adv. Mater. 18, 3089 (2006).

    Article  CAS  Google Scholar 

  19. P. Ding, Z. Z. Li, Q. Wang, X. J. Zhang, S. F. Tang, N. Song, and L. Y. Shi, Mater. Lett. 77, 1 (2012).

    Article  CAS  Google Scholar 

  20. H. Wang, X. Xiang, and F. Li, AICHE J. 56, 768 (2010).

    Article  CAS  Google Scholar 

  21. Y. S. Seo, Y. S. Jung, W. L. Yoon, I. G. Jang, and T. W. Lee, Int. J. Hydrogen Energy 36, 94 (2011).

    Article  CAS  Google Scholar 

  22. K. W. Li, N. Kumada, Y. Yonesaki, T. Takei, N. Kinomura, H. Wang, and C. Wang, Mater. Chem. Phys. 121, 223 (2010).

    Article  CAS  Google Scholar 

  23. M. S. Gasser, Colloids and Surfaces B-Biointerfaces 73, 103 (2009).

    Article  CAS  Google Scholar 

  24. K. B. Yoon, Y. Y. Hwang, S. K. Noh, and D. H. Lee, Polym. J. 40, 50 (2008).

    Article  CAS  Google Scholar 

  25. J. X. Zhu, P. Yuan, H. P. He, R. Frost, Q. Tao, W. Shen, and T. Bostrom, J. Colloid Interface Sci. 319, 498 (2008).

    Article  CAS  Google Scholar 

  26. M. B. A. Rahman, N. M. M. Yunus, M. Z. Hussein, R. Rahman, A. B. Salleh, and M. Basri, Biocatal. Biotransform. 23, 233 (2005).

    Article  Google Scholar 

  27. B. R. Venugopal, C. Shivakumara, and M. Rajamathi, Solid State Sci. 9, 287 (2007).

    Article  CAS  Google Scholar 

  28. W. B. Luo and J. R. Dahn, Chem. Mater. 21, 56 (2009).

    Article  CAS  Google Scholar 

  29. M. Kotal, T. Kuila, S. K. Srivastava, and A. K. Bhowmick, J. Appl. Polym. Sci. 114, 2691 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin-Zheng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, HZ., Chang, YY., Yang, J. et al. Intercalation of biomolecules into NiAl-NO 3 layered double hydroxide films synthesized in situ on anodic alumina/aluminium support. Electron. Mater. Lett. 9, 251–255 (2013). https://doi.org/10.1007/s13391-012-2148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2148-1

Keywords

Navigation