Skip to main content
Log in

Stochastic maximum principle with Lagrange multipliers and optimal consumption with Lévy wage

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

We show how a stochastic version of the Lagrange multiplier method can be combined with the stochastic maximum principle for jump diffusions to solve certain constrained stochastic optimal control problems. Two different terminal constraints are considered; one constraint holds in expectation and the other almost surely. As an application of this method, we study the effects of inflation- and wage risk on optimal consumption. To do this, we consider the optimal consumption problem for a budget constrained agent with a Lévy income process and stochastic inflation. The agent must choose a consumption path such that his wealth process satisfies the terminal constraint. We find expressions for the optimal consumption of the agent in the case of CRRA utility, and give an economic interpretation of the adjoint processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Battocchio, P., Menoncin, F.: Optimal pension fund management in a stochastic framework. Insur. Math. Econ. 34, 79–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. El Karoui, N., Jeanblanc-Picqué, M.: Optimization of consumption with labor income. Financ. Stoch. 2, 409–440 (1998)

  3. El Karoui, N., Hamadane, S., Matoussi, A.: Backward Stochastic Differential Equations and Applications, Indifference Pricing: Theory and Applications, pp. 267–320. Springer, Berlin (2008)

  4. Framstad, N.C., Øksendal, B., Sulem, A.: Sufficient stochastic maximum principle for optimal control of jump diffusions and applications to finance. J. Opt. Theor. Appl. 121, 77–98 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Karatzas, I.: Equilibrium in a Simplified Dynamic, Stochastic Economy with Heterogeneous Agents. Department of Mathematical Sciences, Carnegie Mellon University (paper no. 366) (1989)

  6. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  7. Karatzas, I., Shreve, S.: Methods of Mathematical Finance. Springer, New York (1998)

    Book  MATH  Google Scholar 

  8. Koo, H.K.: Consumption and portfolio selection with labor income: a continuous time approach. Math. Financ. 1, 49–65 (1998)

    Article  MATH  Google Scholar 

  9. Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 3, 247–257 (1969)

    Article  Google Scholar 

  10. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373–413 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  12. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions, 2nd edn. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  13. Romer, D.: Advanced Macroeconomics, 3rd edn. McGraw-Hill/Irwing, New York (2006)

    Google Scholar 

  14. Sydsæter, K., Seierstad, A., Strøm, A.: Matematisk Analyse: Bind 2, 4th edn. Gyldendal Akademisk, Oslo (2012)

    Google Scholar 

  15. Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 5, 1447–1475 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zeldes, S.P.: Optimal consumption with stochastic income: deviations from certainty equivalence. Q. J. Econ. 275–298 (1989)

Download references

Acknowledgments

We would like to thank an anonymous reviewer for helpful suggestions. We are also very grateful for the help of our supervisors, Professor Bernt Øksendal and Professor Kjell Arne Brekke, both at the University of Oslo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Dahl.

Additional information

The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 228087.

Appendix: Some results from stochastic analysis

Appendix: Some results from stochastic analysis

Let \(f : \mathbb {R}_+ \times \mathbb {R} \times \mathbb {R} \rightarrow \mathbb {R}\) and \(g: \mathbb {R} \rightarrow \mathbb {R}\) be given, continuous functions. Consider the stochastic optimal control problem

$$\begin{aligned}&\sup _{u \in \mathcal {A}}\quad E\left[ \int _0 ^T f(t,X(t),u(t)) dt + g(X(T))\right] \nonumber \\&\text{ subject } \text{ to } \nonumber \\&dX(t) = b(t,X(t),u(t))dt + \sigma (t,X(t),u(t))dB(t) \nonumber \\&\quad \qquad + \int _{\mathbb {R}} \gamma (t,X(t^-),u(t^-),z) \tilde{N}(dt,dz)\nonumber \\&X(0)=x \end{aligned}$$
(17)

where \(\mathcal {U} \subset \mathbb {R}\) is a given set, \(b: \mathbb {R}_+ \times \mathbb {R} \times \mathcal {U} \rightarrow \mathbb {R}\), \(\sigma : \mathbb {R}_+ \times \mathbb {R} \times \mathcal {U} \rightarrow \mathbb {R}\) and \(\gamma : \mathbb {R}_+ \times \mathbb {R} \times \mathcal {U} \times \mathbb {R} \rightarrow \mathbb {R}\). The control \(u(t) = u(t,\omega ): \mathbb {R}_+ \times \Omega \rightarrow \mathcal {U}\) is admissible, denoted \(u \in \mathcal {A}\), if the dynamics of X has a unique, strong solution for all \(x \in \mathbb {R}\) and \(E^x[\int _0 ^T f(t,X(t),u(t)) dt + g(X(T))] < \infty \).

In the following theorem, the function \(H : [0,T] \times \mathbb {R} \times \mathcal {U} \times \mathbb {R} \times \mathbb {R} \times \mathcal {R} \rightarrow \mathbb {R}\) is the Hamiltonian function, defined by

$$\begin{aligned} H(t,x,u,p,q,r) = f(t,x,u) + b(t,x,u)p + \sigma (t,x,u)q + \int _{\mathbb {R}} \gamma (t,x,u,z)\nu (dz) \end{aligned}$$
(18)

where \(\mathcal {R}\) is the set of functions such that the integral above converges.

Theorem 3

(A sufficient maximum principle for stochastic optimal control with jumps, Framstad et al. [4]) Let \(\hat{u}\) be an admissible control, i.e. \(\hat{u} \in \mathcal {A}\), with corresponding state process \(\hat{Y} = Y^{\hat{u}}\) and suppose there exists a solution \((\hat{p}(t), \hat{q}(t), \hat{r}(t,z))\) of the corresponding adjoint equation

$$\begin{aligned} dp(t)= & {} - \nabla _y H(t, Y(t), u(t), p(t), q(t), r(t,\cdot ))dt \nonumber \\&+\,\, q(t)dB(t) + \int _{\mathbb {R}} r(t^-, z)\tilde{N}(dt,dz),\quad t<T, \nonumber \\ p(T)= & {} \nabla g(Y(T)) \end{aligned}$$
(19)

satisfying

$$\begin{aligned} E \bigg [ \int _0^T(\hat{Y}(t)- Y^{u}(t))^2 \big \{ \hat{q}^2(t) + \int _{\mathbb {R}} r^2(t,z)\nu (dz) \big \} dt \bigg ] < \infty \end{aligned}$$

and

$$\begin{aligned}&E \bigg [ \hat{p}^2(t) \bigg \{ \sigma ^2(t, Y^u(t),u(t)) + \int _{\mathbb {R}} \gamma ^2(t,Y^u(t),u(t),z) \nu (dz) \bigg \} dt \bigg ] \\&\quad < \infty \quad \text{ for } \text{ all } \,\, u \in \mathcal {A}. \end{aligned}$$

Moreover, suppose that

$$\begin{aligned} H(t,\hat{Y}(t), \hat{u}(t), \hat{p}(t), \hat{q}(t), \hat{r}(t,\cdot )) = \sup _{v \in \mathcal {U}} H(t,\hat{Y}(t), v, \hat{p}(t), \hat{q}(t), \hat{r}(t,\cdot )) \end{aligned}$$

for all t, that g is a concave function of y and that

$$\begin{aligned} \hat{H}(y) := \max _{v \in \mathcal {U}} H(t,y,v,\hat{p}(t), \hat{q}(t), \hat{r}(t,\cdot )) \end{aligned}$$

exists and is a concave function of y, for all \(t \in [0,T]\). Then, \(\hat{u}\) is an optimal control.

Proof

See Framstad et al. [4].

Lemma 2

Consider the stochastic differential equation,

$$\begin{aligned} dX(t)= & {} \left( \mu (t) + \alpha X(t) \right) dt + \beta X(t)dB(t) \\ X(a)= & {} x_a\nonumber \end{aligned}$$
(20)

where \(\mu (t)\) is an adapted stochastic process and \(\alpha , \beta \in \mathbb {R}\).

Then,

$$\begin{aligned} X(t)= & {} \exp \left( \alpha t - \frac{1}{2}\beta ^2 t + \beta B(t)\right) \bigg ( x_a\exp \left\{ -\left( \alpha a - \frac{1}{2}\beta ^2 a + \beta B(a)\right) \right\} \nonumber \\&+ \int _a^t \exp \left( -\alpha s + \frac{1}{2} \beta ^2 s - \beta B(s)\right) \mu (s)ds \bigg ). \end{aligned}$$
(21)

Proof

The idea is to get rid of the terms of the SDE involving X(t) by multiplying with the integrating factor

$$\begin{aligned} J(t) :=\exp \left\{ -\bigg (\alpha t + \frac{1}{2}\beta ^2 t - \beta B(t)\bigg )\right\} . \end{aligned}$$

By Itô’s product rule (see Øksendal [11, Exercise 4.3 i]),

$$\begin{aligned} d(X(t)J(t)) = X(t)dJ(t) + J(t)dX(t) + dX(t)dJ(t). \end{aligned}$$

Itô’s formula implies that

$$\begin{aligned} dJ(t)= ( (-\alpha + \beta ^2)dt -\beta dB(t) ) \exp \left( \alpha t + \frac{1}{2}\beta ^2 t - \beta B(t)\right) . \end{aligned}$$

Hence,

$$\begin{aligned} d(X(t)J(t)) = \exp \left( \alpha t + \frac{1}{2}\beta ^2 t - \beta B(t)\right) \mu (t) dt. \end{aligned}$$

So, by integrating from a to t on both sides and multiplying by \(\frac{1}{J(t)}\), we find the solution

$$\begin{aligned} X(t)= & {} \exp \left( \alpha t - \frac{1}{2}\beta ^2 t + \beta B(t)\right) \bigg ( x_a\exp \left\{ -\left( \alpha a - \frac{1}{2}\beta ^2 a + \beta B(a)\right) \right\} \\&+ \int _a^t \exp \left( -\alpha s + \frac{1}{2} \beta ^2 s - \beta B(s)\right) \mu (s)ds \bigg ). \end{aligned}$$

This concludes the proof.

Lemma 3

(Solution of linear BSDE, Proposition 1.3, El Karoui et al. [3]) Consider a linear BSDE of the form

$$\begin{aligned} -dY(t)= & {} (\phi (t) + Y(t)\beta (t) + Z(t)\mu (t))dt - Z(t)dB(t) \\ Y(\bar{T})= & {} \xi (\bar{T}) \end{aligned}$$

where \(\xi (\bar{T})\) is an \(\mathcal {F}_{\bar{T}}\)-measurable random variable. This BSDE has a unique solution (YZ), where Y is explicitly given by

$$\begin{aligned} Y(t) = E\left[ \xi (\bar{T})\Gamma _{t,\bar{T}} + \int _t^{\bar{T}} \Gamma _{t,s} \phi (s)ds | \mathcal {F}_t\right] \end{aligned}$$

where

$$\begin{aligned} d\Gamma _{t,s}= & {} \Gamma _{t,s}(\beta (s)ds + \mu (s)dB(s)) \\ \Gamma _{t,t}= & {} 1, \Gamma _{t,s} \Gamma _{s,u}= \Gamma _{t,u}\quad \forall t \le s \le u. \end{aligned}$$

Proof

See El Karoui et al. [3].

Finally, we give the proof of Lemma 1.

Proof of Lemma 1   We solve the SDE by multiplying with the integrating factor

$$\begin{aligned} J(t)=\exp \left( [\hat{\pi }+\beta (1-\epsilon )]t+\tilde{\pi }B(t)+\frac{1}{2}\tilde{\pi }^{2}t-\ln (\epsilon )\int _a^t\int _{\mathbb {R}}\tilde{N}_2(du,dz)\right) , \end{aligned}$$

[chosen to get rid of the terms involving W in Eq. (14)]. By the Itô product rule for jump processes (see Øksendal and Sulem [12, Exercise 1.2]),

$$\begin{aligned} d(W(t)J(t))= & {} J(t)\big (\alpha -[\hat{\pi }+\beta (1-\epsilon )]W(t)\big )dt-J(t)\tilde{\pi }W(t)dB(t) \\&+\,\, W(t)J(t)\big (\hat{\pi }+\beta (1-\epsilon )+\tilde{\pi }^{2}\big )dt+W(t)J(t)\tilde{\pi }dB(t) \\&-\,\,\tilde{\pi }^{2}W(t)J(t)dt+\int _{\mathbb {R}}J(t-)z\tilde{N}_1(ds,dz)\\&+\int _{\mathbb {R}}\bigg (-(1-\epsilon )W(t)J(t)\left( \frac{1}{\epsilon }-1\right) +W(t)J(t)\left( \frac{1}{\epsilon }-1\right) \\&-\,\,W(t)J(t)(1-\epsilon )\bigg )\tilde{N}_2(dt,dz)\\= & {} \alpha J(t) dt + \int _{\mathbb {R}}zJ(t-)\tilde{N}_1(dt,dz).\\ \end{aligned}$$

So,

$$\begin{aligned} W(t)J(t)=w_aJ(a)+ \int _{a}^{t}\alpha J(s) ds +\int _{a}^{t}\int _{\mathbb {R}}zJ(s-)\tilde{N}_1(ds,dz), \end{aligned}$$

which gives the solution in Eq. (15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahl, K.R., Stokkereit, E. Stochastic maximum principle with Lagrange multipliers and optimal consumption with Lévy wage. Afr. Mat. 27, 555–572 (2016). https://doi.org/10.1007/s13370-015-0360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-015-0360-5

Keywords

Mathematics Subject Classification

Navigation