Skip to main content
Log in

Effect of chemical reaction and radiation absorption on the unsteady MHD free convection Couette flow in a vertical channel filled with porous materials

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

This paper deals with effect of chemical reaction and radiation absorption on the unsteady MHD natural convection flow in a vertical channel filled with porous materials. One of the plate moves with a constant velocity in the direction of fluid flow while the other plate is stationary. A uniform magnetic field acts perpendicular to the porous plate, which absorbs the fluid with a suction velocity varying with time. The dimensionless governing equations for this problem are solved analytically using two-term harmonic and non-harmonic perturbation series method. The results of the analytical solutions for velocity, temperature and concentration profiles of both phases are graphically presented and discussed. It is noteworthy to mention that growing permeability and channel width parameter lead to increase in the fluid velocity profile. Results in the present work have been compared with other works in literature and an excellent agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Makinde, O.D., Khan, W.A., Khan, Z.H.: Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int. J. Heat Mass Transf. 62, 526–533 (2013)

    Article  Google Scholar 

  2. Nadeem, S., Rizwan, U.H., Khan, Z.H.: Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J. Taiwan Inst. Chem. Eng. 45, 121–126 (2014)

    Article  Google Scholar 

  3. Akbar, N.S., Nadeem, S., Haq, R.U., Khan, Z.H.: Numerical solutions of magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian J. Phys. 87(11), 1121–1124 (2013)

    Article  Google Scholar 

  4. Nadeem, S., Rizwan, U.H., Noreen, S.A., Khan, Z.H.: MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet. Alex. Eng. J. 52, 577–582 (2013)

    Article  Google Scholar 

  5. Sudershan, G., Ramana Reddy, G.V., Reddy, K.J.: Radiation and chemical reaction effects on free convection MHD flow through a porous medium bounded by vertical surface. Adv. Appl. Sci. Res. 3, 1603–1610 (2012)

    Google Scholar 

  6. Ahmad, S., Kalita, D.: Laplace technique on magnetohydrodynamic radiating and chemically reacting fluid over an infinite vertical surface. Int. J. Sci. Technol. 1, 224–233 (2012)

    Google Scholar 

  7. Muthucumaraswamy, R., Ganesan, P.: Effect of the chemical reaction and injection on flow characteristics in an unsteady upward motion of an isothermal plate. J. Appl. Mech. Tech. Phys. 42, 665–671 (2001)

    Article  Google Scholar 

  8. Dulal, P., Babulal, T.: Combined effects of Joule heating and chemical reaction on unsteady magnetohydrodynamic mixed convection of a viscous dissipating fluid over a vertical plate in porous media with thermal radiation. Math. Comput. Model. 54, 3016–3036 (2011)

    Article  MATH  Google Scholar 

  9. Patil, P.M., Kulkarmi, P.S.: Effects of chemical reaction on free convective flow for a polar fluid through a porous medium in the presence of internal heat generation. Int. J. Thermal Sci. 47, 1043–1054 (2008)

    Article  Google Scholar 

  10. Kesavaiah, D.C., Satyanarayana, P.V., Venkataramana, S.: Radiation absorption, chemical reaction and magnetic field effects on the free convection and mass transfer flow through porous medium with constant heat flux. Int. J. Sci. Eng. Technol. 1, 274–284 (2012)

    Google Scholar 

  11. Muthucumaraswamy, R., Shankar, M.R.: First order chemical reaction and thermal radiation effects on unsteady flow past an accelerated isothermal infinite vertical plate. Indian J. Sci. Technol. 4, 5 (2011)

    Google Scholar 

  12. Ibrahim, F.S., Elaiw, A.M., Bakr, A.A.: Effect of chemical reaction and radiation absorption on the unsteady MHD free convection flow past a semi infinite vertical permeable moving plate with heat source and suction. Commun. Nonlinear Sci. Numer. Simul. 13, 1056–1066 (2008)

  13. Hajmohammadi, R.M., Nourazar, S.S.: Conjugate forced convection heat from a heated plate of finite thickness and temperature-dependent thermal conductivity. Heat Transf. Eng. 35, 863–874 (2014)

    Article  Google Scholar 

  14. Zafar, H.K., Rahim, G., Waqar, A.K.: Effect of variable thermal conductivity on heat transfer from a hollow sphere with heat generation using homotopy perturbation method. In: Heat Transfer Summer Conference, pp. 301–309 (2008)

  15. Hajmohammadi, M.R., Nourazar, S.S.: On the solution of characteristic value problems arising in linear stability analysis; semi analytical approach. Appl. Math. Comput. 239, 126–132 (2014)

    Article  MathSciNet  Google Scholar 

  16. Hajmohammadi, R.H., Nourazar, S.S., Manash, A.H.: Semi-analytical treatments of conjugate heat transfer. J. Mech. Eng. Sci. 227, 492–503 (2012)

    Article  Google Scholar 

  17. Hajmohammadi, M.R., Nourazar, S.S.: On the insertion of a thin gas layer in micro cylindrical Couette flows involving power-law liquids. Int. J. Heat Mass Transf. 75, 97–108 (2014)

    Article  Google Scholar 

  18. Hajmohammadi, R.H., Nourazar, S.S., Campo, A.: Analytical Solution for two- phase flow between two rotating cylinders filled with power law liquid and a micro layer of gas. J. Mech. Sci. Technol. 28(5), 1849–1854 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayuba M. Umar.

Appendix

Appendix

$$\begin{aligned} m_1= & {} \frac{-Sc+\sqrt{Sc^2+4Sc\gamma }}{2} \quad m_2=\frac{-Sc-\sqrt{Sc^2+4Sc\gamma }}{2} \\ m_3= & {} \frac{-Sc+\sqrt{Sc^2+4Sc(n+\gamma )}}{2} \quad m_4=\frac{-Sc-\sqrt{Sc^2+4Sc(n+\gamma )}}{2} \\ m_5= & {} \frac{-Pr+\sqrt{Pr^2+4Pr\lambda }}{2} \quad m_6=\frac{-Pr-\sqrt{Pr^2+4Pr\lambda }}{2}\\ m_7= & {} \frac{-Pr+\sqrt{Pr^2+4Pr(n+\lambda )}}{2} \quad m_8=\frac{-Pr-\sqrt{Pr^2+4Pr(n+\lambda )}}{2}\\ m_9= & {} \frac{-1+\sqrt{1+4\left( M+\frac{1}{K}\right) }}{2} \quad m_{10}=\frac{-1-\sqrt{1+4\left( M+\frac{1}{K}\right) }}{2}\\ m_{11}= & {} \frac{-1+\sqrt{1+4\left( M+\frac{1}{K}+n\right) }}{2} \quad m_{12}=\frac{-1-\sqrt{1+4\left( M+\frac{1}{K}+n\right) }}{2}\\ A_1= & {} \frac{e^{m_1H}}{e^{m_2H}-e^{m_1H}} \quad A_2=1-A_1 \quad A_3=\frac{(A_5+A_6-1)e^{m_3H}-A_5e^{m_1H}-A_6e^{m_2H}}{e^{m_4H}-e^{m_3H}}\\ A_4= & {} 1-(A_3+A_5+A_6) \quad A_5=\frac{AA_1Scm_1}{m_1^2+Scm_1-Sc(\gamma +n)} \quad A_5=\frac{AA_2Scm_2}{m_2^2+Scm_2-Sc(\gamma +n)}\\ A_7= & {} \frac{(1-A_9-A_{10})e^{m_6H}+A_9e^{m_1H}+A_{10}e^{m_2H}}{e^{m_6H}-e^{m_5H}} \quad A_8=1-(A_7+A_9+A_{10})\\ A_9= & {} \frac{-PrA_1Q_1}{m_1^2+Prm_1-Pr\lambda } \quad A_{10}=\frac{-PrA_2Q_1}{m_2^2+Prm_2-Pr\lambda } \\ A_{11}= & {} \frac{(A_{13}\!+\!A_{14}\!+\!A_{15}\!{+}\!A_{16}\!+\!A_{17}\!+\!A_{18}\!-\!1)e^{m_8H}\!\!-\!A_{13}e^{m_1H}\!\!-\!A_{14}e^{m_2H}\!\!-\!A_{15}e^{m_3H}\!\!-\!A_{16}e^{m_4H}\!\!-\!A_{17}e^{m_5H}\!\!-\!A_{18}e^{m_6H}}{e^{m_7H}\!\!-\!e^{m_8H}}\\ A_{12}= & {} 1-(A_{11}+A_{13}+A_{14}+A_{15}+A_{16}+A_{17}+A_{18}) \end{aligned}$$
$$\begin{aligned} A_{13}= & {} \frac{-Pr(AA_9m_1+Q_1A_5)}{m_1^2+Prm_1-Pr(\lambda +n)} \quad A_{14}=\frac{-Pr(AA_{10}m_2+Q_1A_6)}{m_2^2+Prm_2-Pr(\lambda +n)}\\ A_{15}= & {} \frac{-PrA_3Q_1}{m_3^2+Prm_3-Pr(\lambda +n)} \quad A_{16}=\frac{-PrA_4Q_1}{m_4^2+Prm_4-Pr(\lambda +n)}\\ A_{17}= & {} \frac{-PrAA_7m_5}{m_5^2+Prm_5-Pr(\lambda +n)} \quad A_{18}=\frac{-PrAA_8m_6}{m_6^2+Prm_6-Pr(\lambda +n)} \\ A_{19}= & {} \frac{(A_{21}+A_{22}+A_{23}+A_{24}-u_p)e^{m_{10}H}-A_{21}e^{m_1H}-A_{22}e^{m_2H}-A_{23}e^{m_5H}-A_{24}e^{m_6H}}{e^{m_9H}-e^{m_{10}H}}\\ A_{20}= & {} u_p-(A_{19}+A_{21}+A_{22}+A_{23}+A_{24}) \quad A_{21}=\frac{-(GrA_9+GmA_1)}{m_1^2+m_1-(M+\frac{1}{K})}\\ A_{22}= & {} \frac{-(GrA_{10}+GmA_2)}{m_2^2+m_2-(M+\frac{1}{K})} \quad A_{23}=\frac{-GrA_7}{m_5^2+m_5-(M+\frac{1}{K})}\\ A_{24}= & {} \frac{-GrA_8}{m_6^2+m_6-(M+\frac{1}{K})} \\ A_{25}= & {} \frac{X_1+X_2+X_3}{e^{m_{11}H}-e^{m_{12}H}}\\ X_1= & {} (A_{27}+A_{28}+A_{29}+A_{30}+A_{31}+A_{32}+A_{33}+A_{34}+A_{35}+A_{36})e^{m_{12}H}\\ X_2= & {} -(A_{27}e^{m_1H}+A_{28}e^{m_2H}+A_{29}e^{m_3H}+A_{30}e^{m_4H}+A_{31}e^{m_5H})\\ X_3= & {} -(A_{32}e^{m_6H}+A_{33}e^{m_7H}+A_{34}e^{m_8H}+A_{35}e^{m_9H}+A_{36}e^{m_{10}H})\\ A_{26}= & {} -(A_{25}+A_{27}+A_{28}+A_{29}+A_{30}+A_{31}+A_{32}+A_{33}+A_{34}+A_{35}+A_{36})\\ A_{27}= & {} \frac{-(GrA_{13}+GmA_5+AA_{21}m_1)}{m_1^2+m_1-(M+\frac{1}{K}+n)} \quad A_{28}=\frac{-(GrA_{14}+GmA_6+AA_{22}m_2)}{m_2^2+m_2-(M+\frac{1}{K}+n)}\\ A_{29}= & {} \frac{-(GrA_{15}+GmA_3)}{m_3^2+m_3-(M+\frac{1}{K}+n)} \quad A_{30}=\frac{-(GrA_{16}+GmA_4)}{m_4^2+m_4-(M+\frac{1}{K}+n)}\\ A_{31}= & {} \frac{-(GrA_{17}+AA_{23}m_5)}{m_5^2+m_5-(M+\frac{1}{K}+n)} \quad A_{32}=\frac{-(GrA_{18}+AA_{24}m_6)}{m_6^2+m_6-(M+\frac{1}{K}+n)}\\ A_{33}= & {} \frac{-GrA_{11}}{m_7^2+m_7-(M+\frac{1}{K}+n)} \quad A_{34}=\frac{-GrA_{12}}{m_8^2+m_8-(M+\frac{1}{K}+n)}\\ A_{35}= & {} \frac{-AA_{19}m_9}{m_9^2+m_9-(M+\frac{1}{K}+n)} \quad A_{36}=\frac{-AA_{20}m_{10}}{m_{10}^2+m_{10}-(M+\frac{1}{K}+n)} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajibade, A.O., Umar, A.M. Effect of chemical reaction and radiation absorption on the unsteady MHD free convection Couette flow in a vertical channel filled with porous materials. Afr. Mat. 27, 201–213 (2016). https://doi.org/10.1007/s13370-015-0334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-015-0334-7

Keywords

Navigation