Skip to main content
Log in

Torsional Vibration and Static Analysis of the Cylindrical Shell Based on Strain Gradient Theory

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the free vibration and torsional static analysis of cylindrical shell are developed using modified strain gradient theory. In doing this, the governing equations and classical and non-classical boundary conditions are derived using Hamilton’s principle. After obtaining equations governing the problem, the differential quadrature method is used to discretize the equations of motion of the vibration problem and to examine the single-walled carbon nanotube (SWCNT) with two clamped-free and clamped–clamped supports as a special application of this formulation. Also, torsional static analysis is carried out for the clamped–clamped SWCNT. Results reveal that SWCNT rigidity in strain gradient theory is higher than that in couple stress theory or the classical theory, which leads to increase in torsional frequencies and decrease in torsion of SWCNT. Results also demonstrate that the effect of size parameter and SWCNT torsion in different lengths and diameters is considerable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou L., Shi S.: Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage. Comput. Mater. Sci. 23(1), 166–174 (2002)

    Article  Google Scholar 

  2. Wang L., Xu Y.Y., Ni Q.: Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: a unified treatment. Int. J. Eng. Sci. 68, 1–10 (2013) doi:10.1016/j.ijengsci.2013.03.004

    Article  MathSciNet  Google Scholar 

  3. Akgöz B., Civalek Ö.: Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48(4), 863–873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zeighampour, H.; Beni, Y.T.: A shear deformable cylindrical shell model based on couple stress theory. Arch. Appl. Mech. 85(4), 539–553 (2014)

  5. Zeighampour, H.; Beni, Y.T.: Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory. Appl. Math. Model. 39(18), 5354–5369 (2015)

  6. Zeighampour H., Beni Y.T.: Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory. Phys. E 61, 28–39 (2014)

    Article  Google Scholar 

  7. Dehrouyeh-Semnani A.M.: The influence of size effect on flapwise vibration of rotating microbeams. Int. J. Eng. Sci. 94, 150–163 (2015)

    Article  MathSciNet  Google Scholar 

  8. Beni, Y.T.; Mehralian, F.; Razavi, H.: Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120, 65–78 (2015)

  9. Zeighampour, H.; Beni, Y.T.; Mehralian, F.: A shear deformable conical shell formulation in the framework of couple stress theory. Acta Mech. 226(8), 2607–2629 (2015)

  10. Baninajjaryan A., Beni Y.T.: Theoretical study of the effect of shear deformable shell model, elastic foundation and size dependency on the vibration of protein microtubule. J. Theor. Biol. 382, 111–121 (2015)

    Article  MathSciNet  Google Scholar 

  11. Shojaeian, M.; Beni, Y.T.: Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sens. Actuators A Phys. 232(1), 49–62 (2015)

  12. Das S.L., Mandal T., Gupta S.S.: Inextensional vibration of zig–zag single-walled carbon nanotubes using nonlocal elasticity theories. Int. J. Solids Struct. 50(18), 2792–2797 (2013) doi:10.1016/j.ijsolstr.2013.04.019

    Article  Google Scholar 

  13. Kahrobaiyan M., Tajalli S., Movahhedy M., Akbari J., Ahmadian M.: Torsion of strain gradient bars. Int. J. Eng. Sci. 49(9), 856–866 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Akgöz B., Civalek Ö.: Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 20(4), 606–616 (2014)

    Article  MathSciNet  Google Scholar 

  15. Akgöz B., Civalek Ö.: A new trigonometric beam model for buckling of strain gradient microbeams. Int. J. Mech. Sci. 81, 88–94 (2014)

    Article  Google Scholar 

  16. Akgöz B., Civalek Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226(7), 2277–2294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sedighi H.M., Koochi A., Abadyan M.: Modeling the size dependent static and dynamic pull-in instability of cantilever nanoactuator based on strain gradient theory. Int. J. Appl. Mech. 6(5), 1450055 (2014)

    Article  Google Scholar 

  18. Narendar S., Ravinder S., Gopalakrishnan S.: Strain gradient torsional vibration analysis of micro/nano rods. Int. J. Nanodimens. 3(1), 1–17 (2012)

    Google Scholar 

  19. Zeverdejani M.K., Beni Y.T.: The nano scale vibration of protein microtubules based on modified strain gradient theory. Curr. Appl. Phys. 13(8), 1566–1576 (2013) doi:10.1016/j.cap.2013.05.019

    Article  Google Scholar 

  20. Beni Y.T., Karimipour I., Abadyan M.: Modeling the instability of electrostatic nano-bridges and nano-cantilevers using modified strain gradient theory. Appl. Math. Model. 39(9), 2633–2648 (2015)

    Article  MathSciNet  Google Scholar 

  21. Gurtin M.E., Weissmüller J., Larché F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78(5), 1093–1109 (1998) doi:10.1080/01418619808239977

    Article  Google Scholar 

  22. Sahmani S., Bahrami M., Aghdam M.: Surface stress effects on the postbuckling behavior of geometrically imperfect cylindrical nanoshells subjected to combined axial and radial compressions. Int. J. Mech. Sci. 100, 1–22 (2015)

    Article  Google Scholar 

  23. Sedighi H.M., Daneshmand F., Abadyan M.: Modified model for instability analysis of symmetric FGM double-sided nano-bridge: corrections due to surface layer, finite conductivity and size effect. Compos. Struct. 132, 545–557 (2015)

    Article  Google Scholar 

  24. Akgöz B., Civalek Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49(11), 1268–1280 (2011) doi:10.1016/j.ijengsci.2010.12.009

    Article  MathSciNet  Google Scholar 

  25. Wang B., Zhao J., Zhou S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A Solids 29(4), 591–599 (2010) doi:10.1016/j.euromechsol.2009.12.005

    Article  Google Scholar 

  26. Zhao J., Zhou S., Wang B., Wang X.: Nonlinear microbeam model based on strain gradient theory. Appl. Math. Model. 36(6), 2674–2686 (2012) doi:10.1016/j.apm.2011.09.051

    Article  MathSciNet  MATH  Google Scholar 

  27. Yin L., Qian Q., Wang L.: Strain gradient beam model for dynamics of microscale pipes conveying fluid. Appl. Math. Model. 35(6), 2864–2873 (2011) doi:10.1016/j.apm.2010.11.069

    Article  MathSciNet  MATH  Google Scholar 

  28. Natsuki T., Tsuchiya T., Ni Q.-Q., Endo M.: Torsional elastic instability of double-walled carbon nanotubes. Carbon 48(15), 4362–4368 (2010) doi:10.1016/j.carbon.2010.07.050

    Article  Google Scholar 

  29. Asghari M., Rafati J., Naghdabadi R.: Torsional instability of carbon nano-peapods based on the nonlocal elastic shell theory. Phys. E 47, 316–323 (2013) doi:10.1016/j.physe.2012.06.016

    Article  Google Scholar 

  30. Gheshlaghi B., Hasheminejad S.M., Abbasion S.: Size dependent torsional vibration of nanotubes. Phys. E 43(1), 45–48 (2010) doi:10.1016/j.physe.2010.06.015

    Article  Google Scholar 

  31. Lim C.W., Li C., Yu J.L.: Free torsional vibration of nanotubes based on nonlocal stress theory. J. Sound Vib. 331(12), 2798–2808 (2012) doi:10.1016/j.jsv.2012.01.016

    Article  Google Scholar 

  32. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003) doi:10.1016/S0022-5096(03)00053-X

    Article  MATH  Google Scholar 

  33. Zeighampour H., Beni Y.T.: Cylindrical thin-shell model based on modified strain gradient theory. Int. J. Eng. Sci. 78, 27–47 (2014)

    Article  MathSciNet  Google Scholar 

  34. Soedel W.: Vibrations of Shells and Plates, 3rd edn. Taylor & Francis, London (2004)

    MATH  Google Scholar 

  35. Shu C.: Differential Quadrature and Its Application in Engineering. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  36. Zong Z., Zhang Y.: Advanced Differential Quadrature Methods. CRC Press, Boca Raton (2009)

    Book  MATH  Google Scholar 

  37. Ansari R., Gholami R., Ajori S.: Torsional vibration analysis of carbon nanotubes based on the strain gradient theory and molecular dynamic simulations. J. Vib. Acoust. 135(5), 051016 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Zeighampour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeighampour, H., Beni, Y.T. & Karimipour, I. Torsional Vibration and Static Analysis of the Cylindrical Shell Based on Strain Gradient Theory. Arab J Sci Eng 41, 1713–1722 (2016). https://doi.org/10.1007/s13369-015-1940-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1940-2

Keywords

Navigation