Skip to main content
Log in

A Nonlocal Higher-Order Shear Deformation Beam Theory for Vibration Analysis of Size-Dependent Functionally Graded Nanobeams

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, free vibration characteristics of functionally graded (FG) nanobeams based on third-order shear deformation beam theory are investigated by presenting a Navier-type solution. Material properties of FG nanobeam are supposed to change continuously along the thickness according to the power-law form. The effect of small scale is considered based on nonlocal elasticity theory of Eringen. Through Hamilton’s principle and third-order shear deformation beam theory, the nonlocal governing equations are derived and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results for FG nanobeams as compared to some cases in the literature. The numerical investigations are presented to investigate the effect of the several parameters such as material distribution profile, small-scale effects, slenderness ratio and mode number on vibrational response of the FG nanobeams in detail. It is concluded that various factors such as nonlocal parameter and gradient index play notable roles in vibrational response of FG nanobeams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ebrahimi F., Rastgoo A., Atai A.A.: A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate. Eur. J. Mech. A Solids 28(5), 962–973 (2009)

    Article  MATH  Google Scholar 

  2. Ebrahimi F., Naei M.H., Rastgoo A.: Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation. J. Mech. Sci. Technol. 23(8), 2107–2124 (2009)

    Article  Google Scholar 

  3. Peddieson J., Buchanan G.R., McNitt R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3), 305–312 (2003)

    Article  Google Scholar 

  4. Reddy J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2), 288–307 (2007)

    Article  MATH  Google Scholar 

  5. Wang Q., Liew K.M.: Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures. Phys. Lett. A 363(3), 236–242 (2007)

    Article  Google Scholar 

  6. Aydogdu M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys. E Low Dimens. Syst. Nanostruct. 41(9), 1651–1655 (2009)

    Article  Google Scholar 

  7. Phadikar J.K., Pradhan S.C.: Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput. Mater. Sci. 49(3), 492–499 (2010)

    Article  Google Scholar 

  8. Pradhan S.C., Murmu T.: Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever. Phys. E Low Dimens. Syst. Nanostruct. 42(7), 1944–1949 (2010)

    Article  Google Scholar 

  9. Civalek, Ö.; Demir C., Akgöz, B.: Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. Math. Comput. Appl. 15(2), 289–298 (2010)

  10. Civalek, Ö.; Demir, Ç.: Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Appl. Math. Model. 35(5), 2053–2067 (2011)

  11. Thai H.-T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    Article  MathSciNet  Google Scholar 

  12. Asghari M. et al.: On the size-dependent behavior of functionally graded micro-beams. Mater. Des. 31(5), 2324–2329 (2010)

    Article  Google Scholar 

  13. Asghari M. et al.: The modified couple stress functionally graded Timoshenko beam formulation. Mater. Des. 32(3), 1435–1443 (2011)

    Article  Google Scholar 

  14. Alshorbagy A.E., Eltaher M.A., Mahmoud F.F.: Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model. 35(1), 412–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ke L.-L., Wang Y.-S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93(2), 342–350 (2011)

    Article  MathSciNet  Google Scholar 

  16. Ansari R., Gholami R., Sahmani S.: Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos. Struct. 94(1), 221–228 (2011)

    Article  MATH  Google Scholar 

  17. Ke L.-L. et al.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50(1), 256–267 (2012)

    Article  MathSciNet  Google Scholar 

  18. Eltaher M.A., Emam S.A., Mahmoud F.F.: Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218(14), 7406–7420 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eltaher M.A., Alshorbagy A.E., Mahmoud F.F.: Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Compos. Struct. 99, 193–201 (2013)

    Article  Google Scholar 

  20. Eltaher M.A., Emam S.A., Mahmoud F.F.: Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct. 96, 82–88 (2013)

    Article  Google Scholar 

  21. Şimşek M., Yurtcu H.H.: Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos. Struct. 97, 378–386 (2013)

    Article  Google Scholar 

  22. Rahmani O., Pedram O.: Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int. J. Eng. Sci. 77, 55–70 (2014)

    Article  MathSciNet  Google Scholar 

  23. Nazemnezhad R., Hosseini-Hashemi S.: Nonlocal nonlinear free vibration of functionally graded nanobeams. Compos. Struct. 110, 192–199 (2014)

    Article  MATH  Google Scholar 

  24. Hosseini-Hashemi S. et al.: Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech. 225(6), 1555–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ebrahimi F. et al.: Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams. J. Mech. Sci. Technol. 29(3), 1207–1215 (2015)

    Article  Google Scholar 

  26. Ebrahimi F., Salari E.: Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method. Compos. Part B Eng. 79, 156–169 (2015)

    Article  Google Scholar 

  27. Ebrahimi F., Salari E.: A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position. Comput. Model. Eng. Sci. (CMES) 105(2), 151–181 (2015)

    Google Scholar 

  28. Ansari R., Mohammadi V., Shojaei M.F., Gholami R., Sahmani S.: On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory. Compos. Part B Eng. 60, 158–166 (2014)

    Article  Google Scholar 

  29. Sahmani S., Bahrami M., Aghdam M.M., Ansari R.: Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams. Compos. Struct. 118, 149–158 (2014)

    Article  Google Scholar 

  30. Ansari R., Pourashraf T., Gholami R.: An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin Walled Struct. 93, 169–176 (2015)

    Article  Google Scholar 

  31. Eringen A.C., Edelen D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  32. Eringen A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  34. Zhang Y.Q., Liu G.R., Xie X.Y.: Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71(19), 195404 (2005)

    Article  Google Scholar 

  35. Wang L., Hu H.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71(19), 195412 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Barati, M.R. A Nonlocal Higher-Order Shear Deformation Beam Theory for Vibration Analysis of Size-Dependent Functionally Graded Nanobeams. Arab J Sci Eng 41, 1679–1690 (2016). https://doi.org/10.1007/s13369-015-1930-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1930-4

Keywords

Navigation