Skip to main content
Log in

Comparison of Electrocalorimetric and Cooling Methods to Determine Specific Heat of Aqueous Solutions of the Sodium Salt Carboxymethylcellulose

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article includes the results of experimental research, determining specific heat of water, glycerin, rapeseed oil and aqueous solutions of carboxymethylcellulose sodium salt. Two research methods were used during measurements. The first one uses Newton’s law of cooling. The second one uses electrocalorimetric measurements. The average calculated values of determined parameter for model liquids did not exceed 1 % error in cooling method and did not exceed 2 % error in calorimetric method. Good conformity of both methods enabled to use them in measurements of liquids with unknown values of specific heat C. In case of carboxymethylcellulose sodium salt, together with increasing concentration, specific heat increases. Significant impact on obtained results has also molar mass M. The highest values C, were obtained for carboxymethylcellulose sodium salt with a molar mass 700,000 kg/kmol and concentration 0.005 kg p/kg within the range of temperatures (303–325) K. Obtained result was over 19 % higher than water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho Y.I., Hartnett J.P.: Non-Newtonian fluids in circular pipe flow. Adv. Heat Transf. 15, 59–141 (1982)

    Article  Google Scholar 

  2. Metzner A.B.: Heat transfer in non-Newtonian fluids. Adv. Heat Transf. 2, 357–397 (1965)

    Article  Google Scholar 

  3. Bellet D., Singelin M., Thirriot C.: Determination des proprietes thermophysiques des liquides non-Newtoniens a l‘aide d‘une cellule a cylinders coaxiaux. Int. J. Heat Mass Transf. 18, 1177–1186 (1975)

    Article  Google Scholar 

  4. Raynaud, M.; Bransier, J.; Delaunay, D.: Fluides complexes. Détermination de leur conductivité thermique et de leur capacité thermique volumique. Rev. Gén. Therm. Fr., 279, 241 (1985)

  5. Semmar N., Tanguier J.L., Rigo M.O.: Specific heat of carboxymethyl cellulose and carbopol aqueous solutions. Termochim. Acta 402, 225–235 (2003)

    Article  Google Scholar 

  6. Semmar N., Tanguier J.L., Rigo M.O.: Analytical expressions of specific heat capacities for aqueous solutions of CMC and CPE. Termochim. Acta 419, 51–58 (2004)

    Article  Google Scholar 

  7. Ramaswamy H.S., Zareifard M.R.: Evaluation of factors influencing tube-flow fluid-to-particle heat transfer coefficient using a calorimetric technique. J. Food Eng. 45, 127–138 (2000)

    Article  Google Scholar 

  8. Villano P., Carewska M., Passerini S.: Specific heat capacity of lithium polymer battery components. Termochim. Acta 402, 219–224 (2003)

    Article  Google Scholar 

  9. Stoliarov S.I., Walters R.N.: Determination of the heats of gasification of polymers using differential scanning calorimetry. Polym. Degrad. Stab. 93, 422–427 (2008)

    Article  Google Scholar 

  10. Kato H., Sasaki K.: Avoiding error of determining the martensite finish temperature due to thermal inertia in differential scanning calorimetry: model and experiment of Ni–Ti and Cu–Al–Ni shape memory alloys. J. Mater. Sci. 47, 1399–1410 (2012)

    Article  Google Scholar 

  11. Kwarciak J., Morawiec H.: Some interpretation problems of thermal studies of the reversible martensitic transformation. J. Mater. Sci. 23, 551–557 (1988)

    Article  Google Scholar 

  12. Milkereita B., Becka M., Reicha M., Kesslera O., Schickb C.: Precipitation kinetics of an aluminium alloy during Newtonian cooling simulated in a differential scanning calorimeter. Termochim. Acta 522, 86–95 (2011)

    Article  Google Scholar 

  13. Kempen A.T.W., Sommer F., Mittemeijer E.J.: Calibration and desmearing of differential thermal analysis measurement signal upon heating and cooling. Termochim. Acta 383, 21–30 (2002)

    Article  Google Scholar 

  14. Perry J.H., Chilton C.H.: Chemical Engineers’ Handbook. McGraw Hill, New York (1973)

    Google Scholar 

  15. Broniarz-Press L, Agaciński P, Różański J: Fluidization in polymer solutions and its effect on rheological properties of a fluid. Appl. Mech. Eng. 4, 197–202 (1999)

    Google Scholar 

  16. Rozanski J., Broniarz-Press L., Dryjer S., Bednarz J.: Effect of the strong electrolyte addition on rheological properties of aqueous solutions of sodium carboxymethyl cellulose. Int. J. Appl. Mech. Eng. 8, 207–212 (2003)

    MATH  Google Scholar 

  17. Harison G.M.: A note on the effect of polymer rigidity and concentration on spray atomization. J. Non-Newton. Fluid Mech. 85, 93–104 (1999)

    Article  Google Scholar 

  18. Broniarz-Press L., Prałat K.: Thermal conductivity of Newtonian and non-Newtonian liquids. Int. J. Heat Mass Transfer 52, 4701–4710 (2009)

    Article  Google Scholar 

  19. Prałat, K.: Determining specific heat of aqueous solutions of the sodium salt carboxymethylcellulose with electrocalorimetric method. In z. Ap. Chem., 54, nr 1, 14–15 (2015) – (in Polish)

  20. Heim, D.; Mrowiec, A.; Prałat, K.: Analysis and interpretation of results of thermal conductivity obtained by the hot wire method. Exp. Techniques (2014). doi:10.1111/ext.12092

  21. Osborne J.; Stimson M.; Ginnings S.: B of S. Jour. Res. 23, 238 (1939). In: Handbook of Chemistry and Physics, 53rd edn. Cleveland, Ohio, D128 (1972–1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Prałat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prałat, K. Comparison of Electrocalorimetric and Cooling Methods to Determine Specific Heat of Aqueous Solutions of the Sodium Salt Carboxymethylcellulose. Arab J Sci Eng 40, 3409–3415 (2015). https://doi.org/10.1007/s13369-015-1858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1858-8

Keywords

Navigation