Skip to main content
Log in

Vibration Control of Rotating Blades Using Root-Embedded Piezoelectric Materials

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The problem of rotating blade vibrations has been recognized as one of the major causes of the system failure in many applications of engineering systems such as turbine blades of turbomachinery in petroleum and airline industries. Having motivated by the successful use of a piezoelectric sensor to capture vibrations of a rotating blade from its root (fixed end), this study aims at controlling the rotating blade vibrations through piezoelectric materials at the root. Vibrations of the rotating blade are sent back to the piezoelectric actuator placed at the bottom of its root via velocity feedback and proportional control schemes in order to act on the rotating blade for vibration attenuation. The case study on a smart rotor system shows the potential of root-embedded piezoelectric materials in controlling rotating blade vibrations at different shaft speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stephens N.G., Wang P.J.: Stretching and bending of a rotating beam. J. Appl. Mech. 53, 869–872 (1986)

    Article  Google Scholar 

  2. Hsu M.H.: Dynamic behaviour of wind turbine blades. Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci. 222, 1453–1464 (2008)

    Article  Google Scholar 

  3. Yoo H.H., Kim S.K.: Free vibration analysis of rotating cantilever plates. AIAA J. 40(11), 2188–2196 (2002)

    Article  Google Scholar 

  4. Xie Z.C., Wong P.K., Chong I.I.: A genetic algorithm-based optimization design on self-sensing active constrained layer damped rotating plates. J. Intell. Mater. Syst. Struct. 22(17), 2069–2078 (2011)

    Article  Google Scholar 

  5. Lin S.C., Hsiao K.M.: Vibration analysis of a rotating Timoshenko beam. J. Sound Vib. 240, 303–322 (2001)

    Article  MATH  Google Scholar 

  6. Young T.H., Gau C.Y.: Dynamic stability of pre-twisted beams with non-constant spin rates under axial random forces. Int. J. Solids Struct. 40, 4675–4698 (2003)

    Article  MATH  Google Scholar 

  7. Yardimoglu B.: Vibration analysis of rotating tapered Timoshenko beams by a new finite element model. Shock Vib. 13, 117–126 (2006)

    Article  Google Scholar 

  8. Maqueda L.G., Bauchau O.A., Shabana A.A.: Effect of the centrifugal forces on the finite element eigenvalue solution of a rotating blade: a comparative study. Multibody Syst. Dyn. 19(3), 281–302 (2008)

    Article  MATH  Google Scholar 

  9. Khulief Y.A., Al-Sulaiman F.A., Arif A., Ben-Mansour R., Al-Qutub A., Anis M.: Computational tradeoff in modal characteristics of complex rotor systems using FEM. Arab. J. Sci. Eng. 37(6), 1653–1664 (2012)

    Article  Google Scholar 

  10. Sun J., Arteaga I.L., Kari L.: General Shell model for a rotating pretwisted blade. J. Sound Vib. 332(22), 5804–5820 (2013)

    Article  Google Scholar 

  11. Choi C.H., Ryu J., Park K.H.: Active vibration control of a flexible beam, based on flow source control. Control Eng. Pract. 7(3), 335–345 (1999)

    Article  Google Scholar 

  12. Khulief Y.A.: Vibration suppression in rotating beams using active modal control. J. Sound Vib. 242(4), 681–699 (2001)

    Article  Google Scholar 

  13. Yang J.B., Jiang L.J., Chen D.C.H.: Dynamic modeling and control of a rotating Euler–Bernoulli beam. J. Sound Vib. 274, 863–875 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shete C.D., Chandiramani N.K., Librescu L.I.: Optimal control of a pretwisted shearable smart composite rotating beam. Acta Mech. 191, 37–58 (2007)

    Article  MATH  Google Scholar 

  15. Svendsen M.N., Krenk S., Hogsberg J.: Resonant vibration control of rotating beams. J. Sound Vib. 330(9), 1877–1890 (2011)

    Article  Google Scholar 

  16. Lin, J.; Zheng, Y.B.: Vibration control of rotating plate by decomposed neuro-fuzzy control with genetic algorithm tuning. In: 2012 IEEE International Conference on Control Applications (CCA), Dubrovnik, Croatia, Oct 3–5, 2012, pp. 575–580 (2012)

  17. Shin S., Cesnik C.E.S., Hall S.R.: Closed-loop control test of the NASA/Army/MIT active twist rotor for vibration reduction. J. Am. Helicopter Soc. 50, 178–194 (2005)

    Article  Google Scholar 

  18. Dhuri K.D., Seshu P.: Favorable locations for piezo actuators in plates with good control effectiveness and minimal change in system dynamics. Smart Mater. Struct. 16(6), 2526–2542 (2007)

    Article  Google Scholar 

  19. Coppotelli G., Marzocca P., Ulker F.D., Campbell J., Nitzsche F.: Experimental investigation on modal signature of smart spring/helicopter blade system. J. Aircr. 45, 1373–1380 (2008)

    Article  Google Scholar 

  20. Chandiramani N.K.: Active control of a piezo-composite rotating beam using coupled plant dynamics. J. Sound Vib. 329(14), 2716–2737 (2010)

    Article  Google Scholar 

  21. Amelian S., Koofigar H.R.: Dynamic analysis and active vibration control of flexible beams using piezoelectric materials: an optimal approach. Appl. Mech. Mater. 26–28, 1237–1241 (2010)

    Article  Google Scholar 

  22. Sunar M., Al-Bedoor B.O.: Vibration measurement of rotating blades using a root embedded PZT sensor. Shock Vib. 15(5), 517–541 (2008)

    Article  Google Scholar 

  23. Sunar M., Al-Bedoor B.O.: Vibration measurement of a cantilever beam using root embedded PZT sensor. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 222, 147–161 (2008)

    Article  Google Scholar 

  24. Mindlin R.D.: Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct. 10(6), 625–637 (1974)

    Article  MATH  Google Scholar 

  25. Nowacki W.: Some general theorems of thermopiezoelectricity. J. Therm. Stress. 1(2), l71–182 (1978)

    Article  Google Scholar 

  26. ANSYS, Inc.: Release 14.5 (2012)

  27. Berlincourt, D.; Krueger, H.H.A.: Technical Publication TP-226 Properties of Piezoelectricity Ceramics. http://www.morganelectroceramics.com/resources/technical-publications/

  28. Friswell M.I., Penny J.E.T., Garvey S.D., Lees A.W.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  29. Rao S.S.: Mechanical Vibrations, 5th Edition in SI Units. Prentice Hall, USA (2011)

    Google Scholar 

  30. Malgaca L., Karagülle H.: Numerical and experimental study on integration of control actions into the finite element solutions in smart structures. Shock Vib. 16(4), 401–15 (2009)

  31. Malgaca L.: Integration of active vibration control methods with finite element models of smart laminated composite structures. Compos. Struct. 92, 1651–1663 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Al-Qahtani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malgaca, L., Al-Qahtani, H. & Sunar, M. Vibration Control of Rotating Blades Using Root-Embedded Piezoelectric Materials. Arab J Sci Eng 40, 1487–1495 (2015). https://doi.org/10.1007/s13369-014-1566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1566-9

Keywords

Navigation