Skip to main content
Log in

Sensing and Control of Thermally Induced Vibrations of Stationary Blades Using Piezoelectric Materials

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Vibration sensing and control of stationary blades (beam/plate-type structures) using piezoelectric materials subjected to thermal loads are considered in this work. Thermal effects are imposed on these blades, which are assumed to be mounted with piezoelectric patches for vibration sensing and control. Effects of the temperature field on the piezoelectric media are treated through the phenomenon of thermopiezoelectricity where electrical, mechanical, and thermal fields are all coupled. First, static blades are considered without control using the finite element method and analytical equations for verification of the finite element model. The finite element program ANSYS is utilized to implement the finite element method in all cases. Negative velocity feedback is then applied for the control of thermally induced vibrations of these stationary blades using the piezoelectric materials. It is concluded that the finite element model is accurate and that the use of the piezoelectric materials in the roots of stationary blades for the purpose of controlling thermally induced vibrations via a negative velocity feedback scheme is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sunar, M.; Yilbas, B.S.; Boran, K.: Thermal and stress analysis of a sheet metal in welding. J. Mater. Process. Technol. 172, 123–129 (2006)

    Article  Google Scholar 

  2. Lee, U.; Kwon, K.: Spectral element modeling of the thermally induced vibration of an axially moving plate. J. Achiev. Mater. Manuf. Eng. 26(1), 65–72 (2008)

    Google Scholar 

  3. Wu, G.Y.: The analysis of a dynamic instability of a bimaterial beam with alternating magnetic fields and thermal loads. J. Sound Vib. 327, 197–210 (2009)

    Article  Google Scholar 

  4. Gu, L.; Qin, Z.; Chu, F.: Analytical analysis of the thermal effect on vibrations of a damped Timoshenko beam. J. Mech. Syst. Signal Process. 60–61, 619–643 (2015)

    Article  Google Scholar 

  5. Marakala, N.; Appu Kuttan, K.K.; Kadoli, R.: Thermally induced vibration of a simply supported beam using finite element method. Int. J. Eng. Sci. Technol. 2(12), 7874–7879 (2010)

    Google Scholar 

  6. Shen, Z.; Tian, Q.; Liu, X.; Hu, G.: Thermally induced vibrations of flexible beams using Absolute Nodal Coordinate Formulation. J. Aerosp. Sci. Technol. 29(1), 386–393 (2013)

    Article  Google Scholar 

  7. Kidawa-Kukla, J.: Thermally induced vibration of a cantilever beam with periodically varying intensity of a heat source. J. Appl. Math. Comput. Mech. 12(4), 59–65 (2013)

    Article  MATH  Google Scholar 

  8. Piefort, V.: Finite element modelling of piezoelectric active structures. Ph.D. thesis, pp. 51–117, Academic Year (2000–2001)

  9. Sunar, M.; Al-Bedoor, B.O.: Vibration measurement of a cantilever beam using root embedded PZT sensor. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 222, 147–161 (2008)

    Article  Google Scholar 

  10. Suhariyono, A.; Goo, N.S.; Park, H.C.: Use of lightweight piezo-composite actuators to suppress the free vibration of an aluminum beam. J. Intell. Mater. Syst. Struct. 19, 101–112 (2008)

    Article  Google Scholar 

  11. Sethi, V.; Song, G.: Multimodal vibration control of a flexible structure using piezoceramic sensor and actuator. J. Intell. Mater. Syst. Struct. 19, 573–582 (2008)

    Article  Google Scholar 

  12. Roy, T.; Manikandan, P.; Chakraborty, D.: Development of an improved eight noded layered shell finite element formulation for piezothermoelastic analysis of smart fiber reinforced polymer (FRP) composite shell structures with bonded piezoelectric sensors and actuators. Finite Elem. Anal. Des. 46(9), 710–720 (2010)

    Article  Google Scholar 

  13. Malgaca, L.; Al-Qahtani, H.; Sunar, M.: Vibration control of rotating blades using root-embedded piezoelectric materiales. Res. Artic. Mech. Eng. Arab. J. Sci. Eng. 40, 148–1495 (2015)

    Google Scholar 

  14. Kerboua, M.; Megnounif, A.; Benguediab, M.; Benrahou, K.H.; Kaoulala, F.: Vibration control beam using piezoelectric-based smart materials. J. Compos. Struct. 123, 430–442 (2015)

    Article  Google Scholar 

  15. Romaszko, M.; Sapiński, B.; Sioma, A.: Forced vibrations analysis of a cantilever beam using the vision method. J. Theor. Appl. Mech. 53(1), 243–254 (2015)

    Article  Google Scholar 

  16. Incropera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S.: Fundamentals of Heat and Mass Transfer, 6th edn. Wiley, London (2007)

    Google Scholar 

  17. Boley, B.A.; Weiner, J.H.: Theory of Thermal Stresses. Wiley, London (1967). (4th Printing)

    MATH  Google Scholar 

  18. Ginsberg, J.H.: Advanced Engineering Dynamics, Ch. 6, 2nd edn. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  19. ANSYS 16.1. www.ansys.com

  20. Rao, S.S.: Mechanical Vibrations, 5th edn. Prentice Hall, Englewood Cliffs (2011)

    Google Scholar 

  21. Mindlin, R.D.: Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct. 10(6), 625–637 (1974)

    Article  MATH  Google Scholar 

  22. IEEE: ANSI/IEEE Std. 176-1987: IEEE Standard on Piezoelectricity. The Institute of Electrical and Electronics Engineers, New York (1988)

  23. Berlincourt, D.; Krueger, H.H.A.; Near, C.: Properties of Morgan Electro Ceramic Ceramics. Technical Publication TP-22, 61058-60 (1998)

  24. Davoudi, S.: Effect of Temperature and Thermal Cycles on PZT Ceramic Performance in Fuel Injector Applications. Master of Applied Science Department of Mechanical and Industrial Engineering, University of Toronto (2012)

  25. Tzou, H.S.: Development of a light-weight robot end-effector using polymeric piezoelectric bimorph. In: Proceedings of the 1989 IEEE International Conference on Robotics and Automation (Scottsdale, AZ), Computer Society Press, Los Angeles, May 14–19, pp. 1704–1709 (1989)

  26. Sunar, M.; Rao, S.S.: Thermopiezoelectric control design and actuator placement. AIAA J. 35, 534–539 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Al-Athel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Athel, K.S., Al-Qahtani, H.M., Sunar, M. et al. Sensing and Control of Thermally Induced Vibrations of Stationary Blades Using Piezoelectric Materials. Arab J Sci Eng 43, 1301–1311 (2018). https://doi.org/10.1007/s13369-017-2832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2832-4

Keywords

Navigation