Skip to main content
Log in

A Deep Catastrophic Failure Model of Hillslope for Numerical Manifold Method and Multiple Physics Computation

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study was aimed to create an analytical model for simulating deep catastrophic failure of hillslope (or deep-seated landslide) to help determining assessment criteria of potential risk based on numerical manifold method (NMM) and coupled multi-physics computation (MPC), in which the failure status is simulated by the NMM while the risk factors are studied by the MPC. The simulation delivers the landslide results that are compared with a laboratory test for approval. The proposed model includes a small-scale hillslope designed by two-dimensional geometry for the plane strain problem. Thus, the porous materials are considered for coupling fluid–structure interactions in hydraulic and geotechnical analyses. Meanwhile, discontinuous joints are assumed along the potential failure surfaces within the deep-seated layer to simulate collapse behaviors of hillslope once the risk factors, such as effective stress and friction angle, reach the thresholds. Furthermore, the model is initially setup as laboratory scale for comparing with a hydraulic experiment that practices the failure condition caused by seepage. The simulation hence explorers the criteria of potential failure risks due to variations of slope, friction angle, and groundwater level. This study performs feasibility of the proposed model that provides a reliable procedure based on both simulation and experiment to estimate the potential risks for deep catastrophic landslides. In the future, the study can be expanded for evaluating full-scale landslide in a variety of hillslope properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukhlisin M., Taha M.R., Kosugi K.I.: Numerical analysis of effective soil porosity and soil thickness effects on slope stability at a hillslope of weathered granitic soil formation. Geosci. J. 12(2), 401–410 (2008)

    Article  Google Scholar 

  2. Hadadin N., Tarawneh Z., Shatanawi K., Banihani Q., Hamdi M.R.: Hydrological analysis for floodplain hazard of Jeddah’s drainage basin, Saudi Arabia. Arabian J. Sci. Eng. 38(12), 3275–3287 (2013)

    Article  Google Scholar 

  3. Wu W., Sidle R.C.: A distributed slope stability model for steep forested basins. Water Resour. Res. 31(8), 2097–2110 (1995)

    Article  Google Scholar 

  4. Willgoose G., Bras R.L., Rodriguez-Iturbe I.: A coupled channel network growth and hillslope evolution model: 1. Theory. Water Resour. Res. 27(7), 1671–1684 (1991)

    Article  Google Scholar 

  5. Zimmerman W.B.J.: Multiphysics Modeling with Finite Element Methods. World Scientific Publishing Co., Singapore (2006)

    Book  Google Scholar 

  6. Bathe K.-J., Zhang H., Ji S.: Finite element analysis of fluid flows fully coupled with structural interactions. Comput. Struct. 72(1–3), 1–16 (1999)

    Article  MATH  Google Scholar 

  7. Hubbert M.K.: Darcy’s law and the field equations of the flow of underground fluids. Int’l. Assoc. Sci. Hydrol. Bull. 2(1), 23–59 (1957)

    Article  Google Scholar 

  8. Whitaker S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986)

    Article  Google Scholar 

  9. Whitaker S.: Flow in porous media II: the governing equations for immiscible, two-phase flow. Transp. Porous Media. 1(2), 105–125 (1986)

    Article  Google Scholar 

  10. Ross P.J.: Efficient numerical methods for infiltration using Richards’ equation. Water Resour. Res. 26(2), 279–290 (1990)

    Article  Google Scholar 

  11. Kumpel H.-J.: Poroelasticity: parameters reviewed. Geophys. J. Int. 105(3), 783–799 (1991)

    Article  Google Scholar 

  12. Belkhatir M., Schanz T., Arab A., Della N.: Experimental study on the pore water pressure generation characteristics of saturated silt sands. Arabian J. Sci. Eng. 39(8), 6055–6067 (2014)

    Article  Google Scholar 

  13. Paniconi C., Aldama A.A., Wood E.F.: Numerical evaluation of iterative and noniterative methods for the solution of the nonlinear Richards equation. Water Resour. Res. 27(6), 1147–1163 (1991)

    Article  Google Scholar 

  14. Kirkland M.R., Hills R.G., Wierenga P.J.: Algorithms for solving Richards’ equation for variably saturated soils. Water Resour. Res. 28(8), 2049–2058 (1992)

    Article  Google Scholar 

  15. van Dam J.C., Feddes R.A.: Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation. J. Hydrol. 233(1–4), 72–85 (2000)

    Google Scholar 

  16. Loret B., Prevost J.H.: Accurate numerical solutions for drucker–prager elastic-plastic models. Comput. Methods Appl. Mech. Eng. 54(3), 259–277 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu M., Gao Y., Liu H.: A nonlinear Drucker–Prager and Matsuoka–Nakai unified failure criterion for geomaterials with separated stress invariants. Int’l. J. Rock Mech. Mining Sci. 50, 1–10 (2012)

    Article  MATH  Google Scholar 

  18. Eslami Haghighat A., Binesh S.M.: Domain decomposition algorithm for coupling of finite element and boundary element methods. Arabian J. Sci. Eng. 39(5), 3489–3497 (2014)

    Article  Google Scholar 

  19. Yu M.-H., Zan Y.-W., Zhao J., Yoshimine M.: A unified strength criterion for rock material. Int’l. J. Rock Mech. Mining Sci. 39(8), 975–989 (2002)

    Article  Google Scholar 

  20. Podgórski J.: General failure criterion for isotropic media. J. Eng. Mech. 111(2), 188–201 (1985)

    Article  Google Scholar 

  21. Montgomery D.R., Dietrich W.E.: A physically based model for the topographic control on shallow landsliding. Water Resour. Res. 30(4), 1153–1171 (1994)

    Article  Google Scholar 

  22. Toprak S., Holzer T.: Liquefaction potential index: field assessment. J. Geotech. Geoenviron. Eng. 129(4), 315–322 (2003)

    Article  Google Scholar 

  23. Carrara A., Cardinali M., Detti R., Guzzetti F., Pasqui V., Reichenbach P.: GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Process. Landf. 16(5), 427–445 (1991)

    Article  Google Scholar 

  24. Onen F.: Prediction of scour at a side-weir with GEP, ANN and regression models. Arabian J. Sci. Eng. 39(8), 6031–6041 (2014)

    Article  Google Scholar 

  25. Laouafa F., Darve F.: Modelling of slope failure by a material instability mechanism. Comput. Geotech. 29(4), 301–325 (2002)

    Article  Google Scholar 

  26. Jaboyedoff M., Baillifard F., Philippossian F., Rouiller J.-D.: Assessing fracture occurrence using weighted fracturing density: a step towards estimating rock instability hazard. Nat. Hazards Earth Syst. Sci. 4(1), 83–93 (2004)

    Article  Google Scholar 

  27. Moriwaki H., Inokuchi T., Hattanji T., Sassa K., Ochiai H., Wang G.: Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides 1, 277–288 (2004)

    Article  Google Scholar 

  28. Olivares L., Damiano E.: Postfailure mechanics of landslides: laboratory investigation of flowslides in pyroclastic soils. J. Geotech. Geoenviron. Eng. 133(1), 51–62 (2007)

    Article  Google Scholar 

  29. Arjmandi S.A., Lotfi V.: Comparison of three efficient methods for computing mode shapes of fluid-structure interaction systems. Arabian J. Sci. Eng. 38(4), 787–803 (2013)

    Article  MathSciNet  Google Scholar 

  30. Valentino R., Barla G., Montrasio L.: Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech. Rock Eng. 41(1), 153–177 (2008)

    Article  Google Scholar 

  31. Okura Y., Kitaharab H., Ochiaia H., Sammoria T., Kawanamic A.: Landslide fluidization process by flume experiments. Eng. Geol. 66(1–2), 65–78 (2002)

    Article  Google Scholar 

  32. Wilson, G.V.; Fox, G.A.: Pore-water pressures associated with clogging of soil pipes: numerical analysis of laboratory experiments. Soil Sci. Soc. Am. J. (2013). doi:10.2136/sssaj2012.0416

  33. Petley D.N., Allison R.J.: The mechanics of deep-seated landslides. Earth Surf. Process. Landf. 22(8), 747–758 (1997)

    Article  Google Scholar 

  34. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  35. Shi G.-H., Goodman R.E.: Two dimensional discontinuous deformation analysis. Int’l. J. Numer. Anal. Methods~Geomech. 9(6), 541–556 (1985)

    Article  MATH  Google Scholar 

  36. Shil, G.: Manifold method of material analysis. Transaction of the 9th Army Conference on Applied Mathematics and Computing, Minneapolis, MN, pp. 57–76 (1991)

  37. Shi G.-H.: Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structures. Eng. Comput. 9(2), 157–168 (1992)

    Article  Google Scholar 

  38. Shi, G.-H.: Three dimensional discontinuous deformation analysis. In: Proceedings of the 38th US rock mechanics symposium, pp. 1421–1428. Washington, DC (2001)

  39. Lin H.-C., Hong Y.-M., Kan Y.-C., Sung W.-P.: An efficient risk assessment model for structure safety of aged dam. Disaster Adv. 5(4), 331–337 (2012)

    Google Scholar 

  40. Lin H.-C., Lin Y.-S., Hong Y.-M., Kan Y.-C., Sung W.-P.: Risk assessment with coupling multiple physics computation for potential failures of landslide dam model. Disaster Adv. 6(S3), 326–337 (2013)

    Google Scholar 

  41. Tan T.-S., Scott R.F.: Centrifuge scaling considerations for fluid-particle systems. Géotechnique 35(4), 461–470 (1985)

    Article  Google Scholar 

  42. Chikatamarla R., Laue J., Springman S.M.: Centrifuge scaling laws for guided free fall events including rockfalls. Int’l. J. Phys. Modell. Geotech. 6(2), 15–26 (2006)

    Google Scholar 

  43. Garnier J., Gaudin C., Springman S.M., Culligan P.J., Goodings D.J., Konig D., Kutter B.L., Phillips R., Randolph M.F., Thorel L.: Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. Int’l. J. Phys. Modell. Geotech. 7(3), 1–23 (2007)

    Google Scholar 

  44. Wang Y.-H., Jiang W.-G., Wang Y.-H.: Scale effects in scour physical-model tests: cause and alleviation. J. Marine Sci. Technol. 21(5), 532–537 (2013)

    Google Scholar 

  45. Hong, Y.-M.: The piping erosion of subsurface flow using a laboratory experiment. J. Appl. Sci. Agric. Accepted 9(11), 186–189 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Ming Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HC., Kan, YC., Sung, WP. et al. A Deep Catastrophic Failure Model of Hillslope for Numerical Manifold Method and Multiple Physics Computation. Arab J Sci Eng 40, 735–746 (2015). https://doi.org/10.1007/s13369-014-1540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1540-6

Keywords

Navigation