Skip to main content
Log in

Conductivity Measurements of Electrochemically Synthesized Selenophene–Thiophene Conducting Materials: Effect of Temperature and Polymerization Solution

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The electrical conductivity measurements of selenophene-thiophene copolymers were successfully achieved using a four-probe technique. The influence of the polymerization solution, the applied polymerization potential and the monomer feed ratio on the electrical conductivity was investigated. The conductivity of obtained films generally increased with increasing temperature, implying more electrons might acquire enough energy to move from the valence to the conducting band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amanokura J., Suzuki Y., Imabayashi S., Watanabe M.: Polypyrrole/polymer electrolyte composites prepared by In Situ electropolymerization of pyrrole as cathode/electrolyte material for facile electron transfer at the solid interface. J. Electrochem. Soc. 148, D43 (2001)

    Article  Google Scholar 

  2. Sotzing G.A., Briglin S.M., Grubbs R.H., Lewis N.S.: Preparation and properties of vapor detector arrays formed from Poly(3,4 ethylenedioxy)thiophene-poly(styrene sulfonate)/insulating polymer composites. Anal. Chem. 72, 3181 (2000)

    Article  Google Scholar 

  3. Lin C.W., Hwang B.J., Lee C.R.: Characteristics and sensing behavior of electrochemically codeposited polypyrrole-poly(vinyl alcohol) thin film exposed to ethanol vapors. J. Appl. Polym. Sci. 73, 2079 (1999)

    Article  Google Scholar 

  4. Malinauskas A., Malinauskiene J., Ramanavicius A.: Conducting polymer-based nanostructurized materials: electrochemical aspects. Nanotechnology 16, R51 (2005)

    Article  Google Scholar 

  5. James D., Scott S.M., Ali Z., Ohare W.T.: Chemical sensors for electronic nose systems. Microchim. Acta 149, 1 (2005)

    Article  Google Scholar 

  6. Guernion N.J.L., Hayes W.: 3- and 3,4-Substituted pyrroles and thiophenes and their corresponding polymers. Curr. Org. Chem. 8, 637 (2004)

    Article  Google Scholar 

  7. Vidal J.C., Garciaruiz E., Castillo J.R.: Recent advances in electropolymerized conducting polymers in amperometric biosensors. Microchim. Acta 143, 93 (2003)

    Article  Google Scholar 

  8. Dai L.M., Soundarrajan P., Kim T.: Sensors and sensor arrays based on conjugated polymers and carbon nanotubes. Pure Appl. Chem. 74, 1753 (2002)

    Article  Google Scholar 

  9. Trojanowicz M., Vel Krawczyk T.K., Alexander P.W.: Organic conductings as active materials in electrochemical chemo sensors and biosensors. Chem. Anal. 42, 199 (1997)

    Google Scholar 

  10. Trojanowicz M.: Organic conducting polymers as active materials in electrochemical chemo-sensors and biosensors. Microchim. Acta 143, 75 (2003)

    Article  Google Scholar 

  11. Cosnier S.: Biosensors based on electropolymerized films: new trends. Anal. Bioanal. Chem. 377, 507 (2003)

    Article  Google Scholar 

  12. Bartlett P.N., Birkin P.R.: The application of conducting polymers in biosensors. Synth. Met. 61, 15 (1993)

    Article  Google Scholar 

  13. Sadik O.A.: Bioaffinity sensors based on conducting polymers. Electroanalysis 11, 839 (1999)

    Article  Google Scholar 

  14. Wallace G.G., Smyth M., Zhao H.: Conducting electroactive polymer-based biosensors. TRAC-Trends Anal. Chem. 18, 245 (1999)

    Article  Google Scholar 

  15. Shinohara, H.; Aizawa, M.; Shirakawa, H.: Ion-sieving of electrosynthesized polypyrrole films. J. Chem. Soc. Chem. Commun. 1, 87 (1986)

  16. Le H.N.T., Garcia B., Deslouis C., Xuan Q.L.: Corrosion protection of iron by polystyrenesulfonate-doped polypyrrole films. J. Appl. Electrochem. 32, 105 (2002)

    Article  Google Scholar 

  17. Buckley L.J., Eashoo M.: Polypyrrole-coated fibers as microwave and millimeter wave obscurants. Synth. Met. 78, 1 (1996)

    Article  Google Scholar 

  18. Kelkar D., Chourasia A.: Structural properties of polythiophene doped with FeCl3. Chem. Chem. Tech. 5, 309 (2011)

    Google Scholar 

  19. Malinauskas A.: Electrocatalysis at conducting polymers. Synth. Met. 107, 75 (1999)

    Article  Google Scholar 

  20. Grundmeier G., Schmidt W., Stretmann M.: Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochim. Acta 45, 2515 (2000)

    Article  Google Scholar 

  21. Gurunathan K., Mrurgan A.V., Marimuthu R., Mulik U.P., Amalnerkar D.P.: Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater. Chem. Phys. 61, 173 (1999)

    Article  Google Scholar 

  22. Otero T.F., Cantero I.: Conducting polymers as positive electrodes in rechargeable lithium-ion batteries. J. Power Sources 81, 838 (1999)

    Article  Google Scholar 

  23. Fritz B., Paul R.: Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 45, 2467 (2000)

    Article  Google Scholar 

  24. Bobade R.: Polythiophene composites: a review of selected applications. J. Polym. Eng. 31, 209 (2011)

    Article  Google Scholar 

  25. Cosnier S.: Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. Biosens. Bioelectron. 14, 443 (1999)

    Article  Google Scholar 

  26. Parthasarathy R.V., Martin C.R.: Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature 369, 298 (1994)

    Article  Google Scholar 

  27. Inoue S., Nakanishi H., Takimiya K., Aso Y., Otsubo T.: Electrochemical and spectroscopic properties of oligoselenophenes. Synth. Met. 84, 341 (1997)

    Article  Google Scholar 

  28. Yang R., Tian R., Yan J., Zhang Y., Yang J., Hou Q., Yang W., Zhang C., Cao Y.: Deep-Red electroluminescent polymers? Synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices. Macromolecules 38, 244 (2005)

    Article  Google Scholar 

  29. Mahatsekake C., Catel J., Andrieu C., Ebel M., Mollier Y., Tourillon G.: Synthese et etude electrochimique de poly(alkyl-3 selenophenes). Phosphorus Sulfur Silicon Relat. Elem. 47, 35 (1990)

    Article  Google Scholar 

  30. Patra A., Bendikov M.: Polyselenophenes. J. Mater. Chem. 20, 422 (2010)

    Article  Google Scholar 

  31. Narita Y., Hagiri I., Takahashi N., Takeda K.: Electronic structures of polyheterole monomers, oligomers, polymers and their block copolymers. Jpn. J. Appl. Phys. 43, 4248 (2004)

    Article  Google Scholar 

  32. Salzner U., Lagowski J.B., Pickup P.G., Poirier R.A.: Comparison of geometries and electronic structures of polyacetylene, polyborole, polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene. Synth. Met. 96, 177 (1998)

    Article  Google Scholar 

  33. Wang C.S., Ellern A., Becker J.Y., Bernstein J.: New angular molecular donor containing two tetrathiafulvalene (ttf) units fused to selenophene: synthesis, x-ray structure, cyclic voltammetry and conducting charge transfer complex with TCNQ. Adv. Mater. 7, 644 (1995)

    Article  Google Scholar 

  34. del del Valle M.A., Ugalde L., Diaz F.R., Bodini M.E., Berne’de J.C., Chaillou A.: SEM study of the growth of electrochemically obtained polyselenophene thin films. Effect of electrolyte and monomer concentration in acetonitrile. Polym. Bull. 51, 55 (2003)

    Article  Google Scholar 

  35. Sauvajol J.L., Chenouni D., Hasoon S., Lere-Porte J.P.: Photoluminescence in polythiophene and polyselenophene. Synth. Met. 28, C293 (1989)

    Article  Google Scholar 

  36. Glenis S., Ginley D.S., Frank A.J.: Solid-state and electrochemical properties of polyselenophene. J. Appl. Phys. 62, 190 (1987)

    Article  Google Scholar 

  37. Xu J., Hou J., Zhang S., Nie G., Pu S., Shen L., Xiao Q.: Electrosynthesis of high quality freestanding polyselenophene films in boron trifluoride diethyl etherate. J. Electroanal. Chem. 587, 345 (2005)

    Article  Google Scholar 

  38. Aydemir K., Tarkuc S., Durmus A., Gunbas G.E., Toppare L.: Synthesis, characterization and electrochromic properties of a near infrared active conducting polymer of 1,4-di(selenophen-2-yl)-benzene. Polymer 49, 2029 (2008)

    Article  Google Scholar 

  39. Cihaner A., Algi F.: An electrochromic and fluorescent polymer based on 1-(1-naphthyl)-2,5-di-2-thienyl-1H-pyrrole. J. Electroanal. Chem. 614, 101 (2008)

    Article  Google Scholar 

  40. Alakhras F., Holze R.: Furan–thiophene copolymers: electrosynthesis and electrochemical behavior. J. Appl. Polym. Sci. 107, 1133 (2008)

    Article  Google Scholar 

  41. Alakhras F., Holze R.: Redox thermodynamics, conductivity and raman spectroscopy of electropolymerized furan-thiophene copolymers. Electrochim. Acta 52, 5896 (2007)

    Article  Google Scholar 

  42. Alakhras F., Holze R.: In situ UV-Vis- and FT-IR- Spectroscopy of electrochemically synthesized furan-thiophene copolymers. Synth. Met. 157, 109 (2007)

    Article  Google Scholar 

  43. Alakhras F., Holze R.: Spectroelectrochemistry of intrinsically conducting furan-3-chlorothiophene copolymers. J Solid State Electrochem. 12, 81 (2008)

    Article  Google Scholar 

  44. Arjomandi J., Alakhras F., Al-Halasah W., Holze R.: Spectroelectrochemical and theoretical tools applied towards an enhanced understanding of structure, energetics and dynamics of molecules and polymers: polyfuranes, polythiophenes, polypyrroles and their copolymers. Jordan J. Chem. 4, 279 (2009)

    Google Scholar 

  45. Alakhras, F.: Electrochemical behavior and conductivity measurements of electropolymerized selenophene-based copolymers. Mater. Sci. Poland (2014). doi:10.2478/s13536-014-0257-2

  46. Alakhras F.: Electrosynthesis of poly (selenophene-co-thiophene) films in boron trifluoride diethyl etherate/ethyl ether. Chem. Chem. Tech. 8, 265 (2014)

    Google Scholar 

  47. Van Keuren E., Wakebe T., Andreaus R., Mohwald H., Schrof W., Belov V., Matsuda H., Rangel-Rojo R.: Wavelength dependence of the third-order nonlinear optical properties of a polythiophene/selenophene derivative film. Appl. Phys. Lett. 75, 3312 (1999)

    Article  Google Scholar 

  48. Jenkins I.H., Salzner U., Pickup P.G.: Conducting copolymers of pyridine with thiophene, N-methylpyrrole, and selenophene. Chem. Mater. 8, 2444 (1996)

    Article  Google Scholar 

  49. Can M., Pekmez K., Pekmez N., Yildiz A.: Increased stability of polythiophene in the presence of aniline in acetonitrile. J. Appl. Polym. Sci. 77, 312 (2000)

    Article  Google Scholar 

  50. Wan X.-B., Li L., He J.-B., Zhou D.-S., Xue G., Wang T.-W.: Electrochemical degradation of polyfuran in wet acetonitrile and aqueous solutions. J. Appl. Polym. Sci. 86, 3160 (2002)

    Article  Google Scholar 

  51. Huang, W.S.; Park, J.M.: Processible conductive copolymers of 3-methylthiophene and methyl methacrylate. J. Chem. Soc. Chem. Commun. 11, 856 (1987)

  52. Zotti, G.; Gumbs, R.: Nalwa, H.S. (ed.) Handbook of Organic Conductive Molecules and Polymers, vol. 2, Ch. 5. Wiley, Chichester (1997)

  53. Yoshino K., Kaneto K., Inoue S., Tsukagoshi K.: Electrochemical preparation of polyselenophene and its property. Jpn. J. Appl. Phys. 22, L701 (1983)

    Article  Google Scholar 

  54. Sugimoto R., Yoshino K., Inoue S., Tsukagoshi K.: Preparation and property of polytellurophene and polyselenophene. Jpn. J. Appl. Phys. 24, L425 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Alakhras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alakhras, F. Conductivity Measurements of Electrochemically Synthesized Selenophene–Thiophene Conducting Materials: Effect of Temperature and Polymerization Solution. Arab J Sci Eng 40, 2913–2918 (2015). https://doi.org/10.1007/s13369-014-1514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1514-8

Keywords

Navigation