Skip to main content
Log in

In situ conductivity measurements of polythiophene partially containing 3,4-ethylenedioxythiophene and 3-hexylthiophene

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Optical and electrochemical properties of a novel polythiophene partially containing 3,4-ethylenedioxythiophene (EDOT), poly(3,3″″-dihexyl-3′,4′,3‴,4‴-diethylenedioxy-2,2′:5′,2″:5″,2‴:5‴,2″″-quinquethiophene), in a neutral state, which was synthesized by polycondensation using direct C-H coupling reaction, were firstly investigated. In situ electrical conductivity of the doped polymer film was measured simultaneously with doping levels at different potentials to yield charge carrier mobilities as a function of doping level of the polymer. The highest conductivity was found to be around 101 S cm−1, which is almost one-order higher than that of an EDOT-containing polythiophene obtained by electrolytic polymerization, poly(3″,4″-ethylenedioxy-2,2′:5′,2″-terthiophene).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Skotheim TA, Reynolds JR (eds) (2007) Handbook of conducting polymers, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  2. Leclerc M, Morin JF (eds) (2010) Design and synthesis of conjugated polymers. Wiley-VCH, Weinheim

    Google Scholar 

  3. Chujo Y (ed) (2010) Conjugated polymer synthesis: methods and reactions. Wiley-VCH, Weinheim

    Google Scholar 

  4. Inzelt G (ed) (2012) Conducting polymers: a new era in electrochemistry. Springer, Heidelberg

    Google Scholar 

  5. Kirchmeyer S, Reuter K (2005) Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem 15:2077–2088

    Article  CAS  Google Scholar 

  6. Yan H, Okuzaki H (2010) Poly(3,4-ethylenedioxythiophen)/poly(4-styrenesulfonate): thin films and microfibers. Macromol Symp 296:286–293

    Article  CAS  Google Scholar 

  7. Elschner A, Lövenich W (2011) Solution-deposited PEDOT for transparent conductive applications. MRS Bull 36:794–798

    Article  CAS  Google Scholar 

  8. Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth Met 162:912–917

    Article  CAS  Google Scholar 

  9. Matsushita S, Jeong YS, Akagi K (2013) Electrochromism-driven linearly and circularly polarised dichroism of poly(3,4-ethylenedioxythiophene) derivatives with chirality and liquid crystallinity. Chem Commun 49:1883–1890

    Article  CAS  Google Scholar 

  10. Patra A, Bendikov M, Chand S (2014) Poly(3,4-ethylenedioxyselenophene) and its derivatives: novel organic electronic materials. Acc Chem Res 47:1465–1474

    Article  CAS  Google Scholar 

  11. Raimundo JM, Blanchard P, Frère P, Mercier N, Ledoux-Rak I, Hierleb R, Roncali J (2001) Push–pull chromophores based on 2,2´-bi(3,4-ethylenedioxythiophene) (BEDOT) p-conjugating spacer. Tetrahedron Lett 42:1507–1510

    Article  CAS  Google Scholar 

  12. Raimundo JM, Blanchard P, Gallego-Planas N, Mercier N, Ledoux-Rak I, Hierle R, Roncali J (2002) Design and synthesis of push-pull chromophores for second-order nonlinear optics derived from rigidified thiophene-based p-conjugating spacers. J Org Chem 67:205–218

    Article  CAS  Google Scholar 

  13. Turbiez M, Frère P, Allain M, Videlot C, Ackermann J, Roncali J (2005) Design of organic semiconductors: tuning the electronic properties of p-conjugated oligothiophenes with the 3,4-ethylenedioxythiophene (EDOT) building block. Chem Eur J 11:3742–3752

    Article  CAS  Google Scholar 

  14. Spencer HJ, Skabara PJ, Giles M, McCulloch I, Coles SJ, Hursthouse MB (2005) The first direct experimental comparison between the hugely contrasting properties of PEDOT and the all-sulfur analogue PEDTT by analogy with well-defined EDTT–EDOT copolymers. J Mater Chem 15:4783–4792

    Article  CAS  Google Scholar 

  15. Özen AS, Atilgan C, Sonmez G (2007) Noncovalent intramolecular interactions in the monomers and oligomers of the acceptor and donor type of low band gap conducting polymers. J Phys Chem C 111:16362–16371

    Article  Google Scholar 

  16. Hergué N, Leriche P, Blanchard P, Allain M, Gallego-Planas N, Frère P, Roncali J (2008) Evidence for the contribution of sulfur–bromine intramolecular interactions to the self-rigidification of thiophene-based p-conjugated systems. New J Chem 32:932–936

    Article  Google Scholar 

  17. Sotzing GA, Reynolds JR, Steel PJ (1996) Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers. Chem Mater 8:882–889

    Article  CAS  Google Scholar 

  18. Sotzing GA, Reddinger JL, Reynolds JR, Steel PJ (1997) Redox active electrochromic polymers from low oxidation monomers containing 3,4-ethylenedioxythiophene (EDOT). Synth Met 84:199–201

    Article  CAS  Google Scholar 

  19. Johansson T, Mammo W, Svensson M, Andersson MR, Inganäs O (2003) Electrochemical bandgaps of substituted polythiophenes. J Mater Chem 13:1316–1323

    Article  CAS  Google Scholar 

  20. Pepitone MF, Eaiprasertsak K, Hardaker SS, Gregory RV (2003) Synthesis of 2,5-bis[(3,4-ethylenedioxy)thien-2-yl]-3-substituted thiophenes. Org Lett 5:3229–3232

    Article  CAS  Google Scholar 

  21. Andersson P, Forchheimer R, Tehrani P, Berggren M (2007) Printable all-organic electrochromic active-matrix displays. Adv Funct Mater 17:3074–3082

    Article  CAS  Google Scholar 

  22. Atılgan N, Cihaner A, Önal AM (2010) Electrochromic performance and ion sensitivity of a terthienyl based fluorescent polymer. React Funct Polym 70:244–250

    Article  Google Scholar 

  23. Invernale MA, Ding Y, Sotzing GA (2010) All-organic electrochromic spandex. ACS Appl Mater Interfaces 2:296–300

    Article  CAS  Google Scholar 

  24. Imae I, Imabayashi S, Korai K, Mashima T, Ooyama Y, Komaguchi K, Harima Y (2012) Electrosynthesis and charge-transport properties of poly(3′,4′-ethylenedioxy-2,2′:5′,2″-terthiophene). Mater Chem Phys 131:752–756

    Article  CAS  Google Scholar 

  25. Imae I, Sagawa H, Mashima T, Komaguchi K, Harima Y (2014) Synthesis of soluble polythiophene partially containing 3,4-ethylenedioxthiophene and 3-hexylthiophene by polycondensation. Open J Polym Chem 4:in press

  26. Harima Y, Eguchi T, Yamashita K (1998) Enhancement of carrier mobilities in poly(3-methylthiophene) electrochemical doping. Synth Met 95:69–74

    Article  CAS  Google Scholar 

  27. Harima Y, Eguchi T, Yamashita K, Kojima K, Shiotani M (1999) An in situ ESR study on poly(3-methylthiophene): charge transport due to polarons and bipolarons before the evolution of metallic conduction. Synth Met 105:121–128

    Article  CAS  Google Scholar 

  28. Harima Y, Kunugi Y, Yamashita K, Shiotani M (2000) Determination of mobilities of charge carriers in electrochemically aniondoped polythiophene film. Chem Phys Lett 317:310–314

    Article  CAS  Google Scholar 

  29. Tang H, Zhu L, Harima Y, Yamashita K (2000) Chronocoulometric determination of doping levels of polythiophenes: Influences of overoxidation and capacitive processes. Synth Met 110:105–113

    Article  CAS  Google Scholar 

  30. Imae I, Tokita D, Ooyama Y, Komaguchi K, Ohshita J, Harima Y (2011) Charge transport properties of polymer films comprising oligothiophene in silsesquioxane network. Polym Chem 2:868–872

    Article  CAS  Google Scholar 

  31. Imae I, Tokita D, Ooyama Y, Komaguchi K, Ohshita J, Harima Y (2012) Oligothiophenes incorporated in a polysilsesquioxane network: application to tunable transparent conductive films. J Mater Chem 22:16407–16415

    Article  CAS  Google Scholar 

  32. Imae I, Takayama S, Tokita D, Ooyama Y, Komaguchi K, Ohshita J, Harima Y (2012) Synthesis of a novel family of polysilsesquioxanes having oligothiophenes with well-defined structures. Int J Polym Sci 2012:484523 (10 pp)

  33. Imae I, Imabayashi S, Komaguchi K, Tan Z, Ooyama Y, Harima Y (2014) Synthesis and electrical properties of novel oligothiophenes partially containing 3,4-ethylenedioxythiophenes. RSC Adv 4:2501–2508

    Article  CAS  Google Scholar 

  34. Yano J, Kobayashi M, Yamasaki S, Harima Y, Yamashita K (2001) Mean redox potentials of polyaniline determined by chronocoulometry. Synth Met 119:315–316

    Article  CAS  Google Scholar 

  35. Monk P, Mortimer R, Rosseinsky R (2007) Electrochromism and electrochromic devices. Cambridge University Press, Cambridge

    Book  Google Scholar 

  36. Beaujuge PM, Reynolds JR (2010) Color control in p-conjugated organic polymers for use in electrochromic devices. Chem Rev 110:268–320

    Article  CAS  Google Scholar 

  37. Harima Y, Jiang X, Kunugi Y, Yamashita K, Naka A, Lee KK, Ishikawa M (2003) Influence of p-conjugation length on mobilities of charge carriers in conducting polymers. J Mater Chem 13:1298–1305

    Article  CAS  Google Scholar 

  38. Harima Y, Kim DH, Tsutitori Y, Jiang X, Patil R, Ooyama Y, Ohshita J, Kunai A (2006) Influence of extended p-conjugation units on carrier mobilities in conducting polymers. Chem Phys Lett 420:387–390

    Article  CAS  Google Scholar 

  39. Jiang X, Harima Y, Yamashita K, Tada Y, Ohshita J, Kunai A (2002) Doping-induced change of carrier mobilities in poly(3-hexylthiophene) films with different stacking structures. Chem Phys Lett 364:616–620

    Article  CAS  Google Scholar 

  40. Jiang X, Harima Y, Yamashita K, Tada Y, Ohshita J, Kunai A (2003) A transport study of poly(3-hexylthiophene) films with different regioregularities. Synth Met 135–136:351–352

    Article  Google Scholar 

  41. Jiang X, Patil R, Harima Y, Ohshita J, Kunai A (2005) Influences of self-assembled structure on mobilities of charge carriers in pconjugated polymers. J Phys Chem B 109:221–229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Hiroshima Bank (I.I.), the General Sekiyu Research & Development Encouragement & Assistance Foundation (I.I.), the TANAKA Holdings (I.I.), and grants-in-aid for scientific research from the Japan Society for the Promotion of Science (JSPS) (no. 22550198, I.I. and no. 25288085, Y.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ichiro Imae or Yutaka Harima.

Additional information

Dedicated to the memory of Professor Dr. Lothar Dunsch, a caring mentor and a good friend (Yutaka, Ichiro, Yousuke, Kenji).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imae, I., Mashima, T., Sagawa, H. et al. In situ conductivity measurements of polythiophene partially containing 3,4-ethylenedioxythiophene and 3-hexylthiophene. J Solid State Electrochem 19, 71–76 (2015). https://doi.org/10.1007/s10008-014-2579-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2579-8

Keywords

Navigation