Skip to main content
Log in

High-Speed Systolic VLSI Architecture for 2-D Forward Lifting-Based DWT

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, an efficient approach to design a 2-D systolic array for high-speed implementation of block-based lifting lossy 9/7 wavelet filter is proposed. The inherent advantage of the in place computation of the lifting-based discrete wavelet transform over the conventional convolution method makes it suitable for efficient hardware implementation with lower computational complexity. The row processor consists of processing elements arranged in a systolic manner, and for column processing, the lifting steps are computed concurrently, by mapping the coefficients to the same systolic arrays, using the cyclic symmetry property of the block of input image coefficients. The advantage of the discussed architecture is that it does not require additional memory for storing the intermediate coefficients. The functionality of the processing element in the systolic array improves the speed, by having the critical path delay of one multiplier and two adders computational time. The area efficient, high-speed design of the lifting algorithm is coded in hardware description language and implemented in Altera cyclone II field programmable gate arrays (FPGA). The implemented results show that the systolic architecture achieves a high speed of 260MHz with a lower accessing time of 0.246μs, when compared to other existing architectures, and reaches a speed performance suitable for real-time multimedia applications. This conceptual design of systolic arrays can be used as IP core in FPGA-based reconfigurable coprocessors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christopoulos C., Skouras A., Ebrahimi T.: The JPEG2000 still image coding system an overview. IEEE Trans. Consum. Electron. 46, 1103–1127 (2000)

    Article  Google Scholar 

  2. Mallat S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  3. Daubechies I., Sweldens W.: Factoring wavelet transform into lifting steps. J. Fourier Anal. Appl. 4, 247–269 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Singer A.: Colour texture classification using wavelet transform and neural networks ensembles. Arab. J. Sci. Eng. 34(2B), 145–152 (2009)

    Google Scholar 

  5. Parhi K.K., Nishitani T.: VLSI architectures for discrete wavelet transforms. IEEE Trans. VLSI Syst. 1(2), 191–202 (1993)

    Article  Google Scholar 

  6. Denk, T.C.; Parhi, K.K.: Systolic VLSI architectures for 1-D discrete wavelet transforms. In: Proceedings of Asilomar Conference on signals, systems and Computers, vol 2, pp 1220–1224. Pacific Grove, CA (1998)

  7. Wu P.-C., Chen L.-G.: An efficient architecture for two-dimensional discrete wavelet transform. IEEE Trans. Circuits Syst. Video Technol. 11(4), 536–545 (2001)

    Article  Google Scholar 

  8. Andra K., Chakrabarti C., Acharya T.: A VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Trans. Signal Process. 50(4), 966–977 (2002)

    Article  Google Scholar 

  9. Dillen G., Georis B., Legat J.-D., Cantineau O.: Combined line-based architecture for the 5/3 and 9/7 wavelet transform of JPEG2000. IEEE Trans. Circuits Syst. Video Technol. 13(9), 944–950 (2003)

    Article  Google Scholar 

  10. Shi G., Liu W., Zhang L.: An efficient folded architecture for lifting based discrete wavelet transform. IEEE Trans. Circuits Syst II Express Briefs 56(4), 290–294 (2009)

    Article  MathSciNet  Google Scholar 

  11. Huang C.-T., Tseng P.-C., Chen L.-G.: Flipping structure—an efficient VLSI architecture for lifting-based discrete wavelet transform. IEEE Trans. Signal Process. 52(4), 1080–1089 (2004)

    Article  MathSciNet  Google Scholar 

  12. Usha Bhanu, N.; Chilambuchelvan, A.: Efficient VLSI architecture for discrete wavelet transform. IJCSI Int. J. Comput. Sci. Issues, Special Issue, ICVCI-2011, 1(1), 2011 ISSN (Online), 1694–0814 (2011)

  13. Xiong C., Tian J., Liu J.: Efficient architectures for Two dimensional wavelet transform using lifting scheme. IEEE Trans. Image Process. 16(3), 607–614 (2007)

    Article  MathSciNet  Google Scholar 

  14. Cheng C., Parhi K.K.: High-speed VLSI implementation of 2-D discrete wavelet transform. IEEE Trans. Signal Process. 56(1), 393–403 (2008)

    Article  MathSciNet  Google Scholar 

  15. Tian X., Wu L., Tan Y.-H., Tian J.-W.: Efficient multi-input/multi-output VLSI architecture for two-dimensional lifting-based DWT. IEEE Trans. Comput. 60(8), 1207–1211 (2011)

    Article  MathSciNet  Google Scholar 

  16. Kilic I., Yilmaz R.: A hybrid video compression based on zero tree wavelet structure. Arab. J. Sci. Eng. 34(1B), 187–196 (2009)

    Google Scholar 

  17. Salehi S.A., Sadri S.: Investigation of lifting-based hardware architectures for DWT. J. Circuits Syst. Signal Process. 28, 41–55 (2009)

    Article  Google Scholar 

  18. Acharya T., Chakrabarti C.: A survey on lifting-based discrete wavelet transforms architectures. J. VLSI Signal Process. 42, 321–339 (2006)

    Article  MATH  Google Scholar 

  19. Usha Bhanu N., Chilambuchelvan A.: A detailed survey on VLSI architectures for lifting based DWT for efficient hardware implementation. Int. J. VLSI Des. Commun. Syst. (VLSICS) 3(2), 143–164 (2012)

    Article  Google Scholar 

  20. Parhi K.K.: VLSI Digital Signal Processing Systems: Design and Implementation. Wiley, New York (1999)

    Google Scholar 

  21. Kung H.T.: Why systolic architectures. Comput. Mag. 15, 37–45 (1982)

    Article  Google Scholar 

  22. Pan S.B., Park R.H.: Unified systolic array for computation of DCT/DST/DHT. IEEE Trans. Circuits Syst. Video Technol. 7, 413–419 (1997)

    Article  Google Scholar 

  23. Chiper D.F., Swamy M.N.S., Ahamad O., Stouraitis T.: A systolic array architecture for discrete sine transforms. IEEE Trans. Signal Process. 50(9), 2347–2354 (2002)

    Article  MathSciNet  Google Scholar 

  24. Meher P.K., Chandrasekaran S., Amira A.: FPGA realization of FIR filters by efficient and flexible systolization using distributed arithmetic. IEEE Trans. Signal Process. 56(7), 3009–3017 (2008)

    Article  MathSciNet  Google Scholar 

  25. Meher P.K., Mohanty B.K., Patra J.C.: Hardware efficient systolic like modular design for 2D DWT. IEEE Trans. Circuits Syst. II Express Briefs 55(2), 151–155 (2008)

    Article  Google Scholar 

  26. Alwan N.A.S.: Efficient systolic sinusoidal sequence generation. Arab. J. Sci. Eng. 33(1B), 179–186 (2008)

    Google Scholar 

  27. Mohanty B.K., Meher P.K.: Memory efficient modular VLSI architecture for high-throughput and low-latency implementation of multilevel lifting 2-D DWT. IEEE Trans. Signal Process. 59(5), 2072–2084 (2011)

    Article  MathSciNet  Google Scholar 

  28. Mohanty B.K., Mahajan A., Meher P.K.: Area and power efficient architecture for high throughput implementation of lifting 2D DWT’. IEEE Trans. Circuits Syst. II Express Brief. 59(7), 434–438 (2012)

    Article  Google Scholar 

  29. Salehi, S.A.; Amirfattahi, R.: A block based 2D discrete wavelet transform structure with new scan method for overlapped sections. In: Proceedings of the First Middle East Conference on Biomedical Engineering, pp 126–129. Sharjah (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Usha Bhanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usha Bhanu, N., Chilambuchelvan, A. High-Speed Systolic VLSI Architecture for 2-D Forward Lifting-Based DWT. Arab J Sci Eng 39, 6125–6135 (2014). https://doi.org/10.1007/s13369-014-1208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1208-2

Keywords

Navigation