Skip to main content
Log in

Effect of Proton Irradiation on Some Physical Properties of Nitinol (NiTi) Shape Memory Alloy: A Review

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Shape memory alloys (SMAs) are unique class of metal alloys that after a large deformation can, on heating, recover their original shape. Its non-linear behavior and thermal dependence attracted many researchers, engineers, and designers to choose the right material for proper applications in many fields of industry. The most commonly used material is Nitinol (NiTi). Nitinol has been increasingly utilized in a variety of medical devices, biomedical, aerospace, actuators, robotic industries, and nuclear engineering applications. Nitinol, during service in nuclear reactors, is exposed to many types of radiations which may affect its properties and structure. In this article, a comprehensive review on irradiating Nitinol to energetic protons is very useful to people working in this field. Amorphization occurs during proton irradiation. After proton irradiation, the austenite transformation temperatures were raised, the hysteresis, the size and amount of vacancy clusters were increased. Proton irradiation has considerable effect on the transformation temperatures in NiTi SMAs: the martensitic transformation temperature of Nitinol alloy decreased when the proton beam energy exceeded 1.875 MeV. The induced defects by proton irradiation are temporary, and the alloy can retain the parent condition by aging the sample at room temperature for about 76 days or annealing it at 520 K for about 30 min. Nano crystalline materials can exhibit enhanced irradiation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ikuta, K.: Modeling tools for the thermoelastic hysteretic behavior of SMA. Ph.D. Thesis, Institute of Technology, Tokyo (1987)

  2. Ikuta, K.; Ichikawa, H.; Suzuki, K.; Yajima, D.: Multi-degree of Freedom Hydraulic Pressure Driven Safety Active Catheter. ICRA pp. 4161–4166 (2006)

  3. Ikuta, K.; Hasegawa, T.; Daifu, S.: Hyper redundant miniature manipulator “Hyper Finger” for remote minimally invasive surgery in deep area. ICRA 1:1098–1102 (2003)

    Google Scholar 

  4. Ikuta, K.; Yamamoto, K.; Sasaki, K.: Development of remote microsurgery robot and new surgical procedure for deepand narrow space ICRA, pp. 1103–1108 (2003)

  5. Ikuta, K.; Sasaki, K.; Yamamoto, K.; Shimada, T.: Remote Microsurgery System for Deep and Narrow Space - Development of New Surgical Procedure and Microrobotic Tool. MICCAI, pp. 163–172 (2002)

  6. Poncet, P.: Effect of constraining temperature on the postdeployment parameters ofself-expanding nitinol stents. Proceedings of the International Conference on Shape Memory and Superelastic Technologies (SMST), pp. 441–455 (2000)

  7. Nakano Y., Fujie M., Hosada Y.: Hitachi’s Robot Hand. Robotics Age. 6, 18–22 (1984)

    Google Scholar 

  8. Robertson, S. W.; Imbeni, V.; Notkina, E.; Wenk, H. -R.; Ritchie, R. O. In: Proceedings of SMAT conference, Menlo Park, CA, p. 36 (2003)

  9. Ikuta, K.; Tsukamoto, M.; Hirose, S. In: Proceedings of 1988 IEEE Robotics and automation, Philadelphia, PA, pp. 427–430 (1987)

  10. Bergamasco, M.; Salsedo, F.; Dario, P.: A linear SMA motor as direct-drive robotic actuator. IEEE International conference on Robotics and Automation, May, Scottdale, Arizona, pp. 618–623 (1989)

  11. Hashimoto M., Takeda M., Sagawa H., Chiba I., Sato K.: Application of shape memory alloy toroboticactuators. J. Robotic Syst. 2, 3–25 (1985)

    Google Scholar 

  12. Hirosi S., Ikuta K., Umetani Y.: Development of SMA actuators. Perfomance assessment and introduction of anew composing approach. Adv. Robotics 3, 3–16 (1989)

    Google Scholar 

  13. Hirosi, S.; Ikuta, K.; Umetani, Y., Proceedings of the 5th CISM-IFTOMM Symposium, Hermes Publishing, p. 39 (1985)

  14. Hirosi, S.; Ikuta, K.; Sato, K.: Developmental of a shape memory alloy actuator, improvement of outputperformance by the introduction of a a-mechanism. Adv. Robotics 3, 89–108 (1989)

    Google Scholar 

  15. Bergamasco, M.; Salsedo, F.; Dario, P.: Shape memory alloy micromotors for direct-drive actuation of dexterous artificial hands. Sens. Acutators 17, 115–119 (1989)

    Google Scholar 

  16. Kuribayashi, K.: Micro actuator using shape memory alloy for micro robot. In: Proceedings of IEEE Industrial Workshop and Advanced Motion Control, pp. 212–218. Ykohama, March 1990

  17. Kuribayashi K.: A new actuator of a joint mechanism using TiNi alloy wire. Int. Robotics Res. 4, 47–58 (1986)

    Article  Google Scholar 

  18. Tanaka, Y.; Yamada, A.: A rotary actuator using shape memory alloy for arobot-analysis ofthe response with load. IEEE/RSJ International Workshop on Intelligent Robots and Systems IROS ‘91, November 3–5, Osaka, Japan (1991)

  19. Dario, P.; Buttazzo, G.: An anthropomorphic robot finger for investigating artificial tactile perception. Robotics Res. 6(3), 25–48 (1987)

    Google Scholar 

  20. Ikuta, K.; Tssukamoyo, M.; Hirose S.: Shape memory alloy servo aduator system with electric resistance feedback andapplication for active endoscope. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 427–430 (1988)

  21. Giurgiutiu, V.; Zagrai, A.: The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry. SPIE’s 7th international symposium on smart structures and materials and 5th international symposium on nondestructive evaluation and health monitoring of aging infrastructure, pp. 1–12. Newport Beach, CA. paper # 3985 1-12 5–9 March 2000

  22. Golestaneh, A.: Shape-memory phenomena. Phys. Today 62:70 (1984)

    Google Scholar 

  23. Saburi, T.; Otsuka, K.; Wayman, C. M. (eds.): TiNi shape memory alloys. Shape Memory Materials, Cambridge, pp. 49–96 (1998)

  24. Tang, W.; Sundman, B.; Sanström, R.; Qiu, C.: New modelling of the B2 phase and its associated martensitic transformation in the TiNi system. Acta Mater. 47(12), 3457–3468 (1999)

    Google Scholar 

  25. Allafi J.K., Ren X., Eggeler G.: The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys. Acta Mater. 50(4), 793–803 (2002)

    Article  Google Scholar 

  26. Bataillard, L.; Bidaux, J.-E.; Gotthardt, R.: Interaction between Microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission électron microscopy observations. Philos. Mag. A 787, 327–344 (1998)

    Google Scholar 

  27. Dlouhy, A.; Allafi, J. K.; Eggeler G.: Multiple-step martensitic transformations in Ni-rich NiTi alloys–an in-situ transmission electron microscopy investigation. Philos. Mag. 83(3), 339–363 (2003)

    Google Scholar 

  28. Ionatjis, R.R.; Kotov, V.V.; Shchukin, I.M.: Application of shape memory alloys in the nuclear power engineering. Atomnaya Energiya 79(4), 304–306 (1995)

    Google Scholar 

  29. Hornbogen E.: Shape memory alloys. Pract. Met. 26, 270–279 (1989)

    Google Scholar 

  30. Wang, F.E.; Desavage, B.F.; Buchler, W.J.; Hoslev, W.R.: The irreversible critical range in the TiNi transition. Appl. Phys. 39, 2166–2175 (1968)

    Google Scholar 

  31. Wang, F.E.; Buchler, W. J.; Pickart, S.: Crystal structure and a unique “martensitictransition” of TiNi. Appl. Phys. 36, 3232 (1965)

    Google Scholar 

  32. Wang, Z.G.; Zu, X. T.; Feng, X. D.; Zhu, S.; Wang, L.M.: Effect of electrothermal annealing on the transformation behavior of TiNi shape memory alloy and two-way shape memory spring actuated by direct electrical current. Physica B 349, 365–370 (2004)

    Google Scholar 

  33. Miller D.A., Lagouolas D.C.: Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi. Mater. Sci. Eng. A 308, 161–175 (2001)

    Article  Google Scholar 

  34. Eggeler, G.; Allafi, J.K.; Gollerthan, S.C.; Somson, S.; Schmahl, W.; Sheptyakov, D.: On the Effect of Aging on Martensitic Transformation in Ni-Rich NiTi Shape Memory Alloys. Smart Mater. Struct. 14:S186–S191 (2005)

    Google Scholar 

  35. Pozzi, M.; Airoldi, G.: The electrical transport properties of shape memory alloys. Mater. Sci. Eng. A273–A275, 300–304 (1999)

  36. Li, Y.; Cui, L.S.; Xu, H.B.; Yang, D.Z.: Constrained phase-transformation of a TiNi shape-memory alloy. Metall. Mater. Trans. A 34A, 219–223 (2003)

    Google Scholar 

  37. Zheng, Y.; Cui, L.; Zhang, F.: Effects of predeformation on the reverse martensitic transformation of NiTi shape memory alloy. J. Mater. Sci. Technol. 16, 611–614 (2000)

    Google Scholar 

  38. He, Z.; Gall, K.R.; Brinson, L.C.: Matall. Mater. Trans. A 37A:579 (2006)

    Google Scholar 

  39. Huang X., Ackland G.J., Rabe K.M.: Crystal structures and shape memory behavior of NiTi L. Nat. Mater. 2, 307–311 (2003)

    Article  Google Scholar 

  40. Chen, P.; Ting J.: Characteristics of TiNi alloy thin films. Thin Solid Films pp. 398–399, 597–601 (2001)

  41. Otsuka, K.; Wayman, M.: Editors, Shape memory materials, Cambridge University Press (1998). ISBN 0 521 44487 X (hc)

  42. Yahia, L.: Editor, Shape Memory Implants, New York, Spriger -Verlag (2000). ISBN 3 540 67229– X

  43. Kohl, M.: Shape memory micro actuators, Springer, Berlin, Germany (2004). ISBN 3 540 20635 3

  44. Otsuka, K.; Ren, X.: Physical metallurgy of TiNi-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005)

    Google Scholar 

  45. Yoneyama, T.; Mayazaki, S. (eds.): Shape memory alloys for biomedical applications. Woodhead Publishing (2008)

  46. Luzzi, D.E.; Mori, H.; Fujita, H.; Meshii, M.: Driving force for amorphisation of Cu4Ti3 by electron irradiation. Scripta Metull. 19, 897–902 (1985)

    Google Scholar 

  47. Moine, P.; Riviere, J. P.; Ruault, M. O.; Chaumont, J.; Petton, A.: In situ TEM study of martensitic NiTi amorphization by Ni ion implantation. Sinclair Nucl. Inst. Meth. B 718, 20–25 (1985)

    Google Scholar 

  48. Elliott, R.O.; Koss, D.A.: Amorphisation of Pu5Ga3 by neutron irradiation. Nucl. Mater. 97, 339–441 (1981)

    Google Scholar 

  49. Bloch J.: Effet del’ irradiation par les neutrons sur les alliages uranium-fer a faible teneur en fer. Nucl. Mater. 6(2), 203 (1962)

    Article  Google Scholar 

  50. Tolley, A.: The effect of electron irradiation on the β ⇔18R martensitic transformation in Cu-Zn-Al alloys. Radiat. Eff. Defects Solids 128, 229–245 (1994)

    Google Scholar 

  51. Benjamin, M.M.: Nuclear reactor materials and application. p. 61 Van Nostrand Reinhold Co., New York (1983)

  52. Cohen, M.; Olson, G.B.: A mechanism for the strain-induced nucleation of martensitic transformations. Less Common Met. 28(1), 107–118 (1972)

    Google Scholar 

  53. Al-Aql, A.A.; Dughaish, Z. H.; Baig, M.R.: Study of the martensitic transformation in shape-memory nitinol proton-irradiated alloy by electrical resistivity measurements. Mater. Lett. 17, 103–108 (1993)

    Google Scholar 

  54. Pedraza D.F.: Radiation- induced collapse of the crystalline structure. Less Common Met. 140, 219–230 (1988)

    Article  Google Scholar 

  55. Magee, C. L.: The nucleation of martensite. Phase Transform. ASM p. 115 (1970)

  56. Kelly P.M., Nutting J.: The morphology of martensite in iron II. Iron Steel Inst. 197(3), 199–211 (1966)

    Google Scholar 

  57. Al-Aql, A.A.; Dughaish, Z.H.; Baig, M.R.; Hassib, A.M.: Effect of aging and annealing on the electrical resistivity of proton irradiated nitinol. Physica B 210, 87–90 (1995)

    Google Scholar 

  58. Al-Aql, A.A.; Dughaish, Z.H.: Effect of energy variation of proton beam on sharpening nitinol electrical resistivity increase at the martensitic transformation. Physica B 229, 91–95 (1996)

    Google Scholar 

  59. Dughaish, Z.H.: Effect of variation of proton beam energy on the martensitic transformation temperature of shape memory nitinol alloy. Mater. Lett. 32(1):29–32 (1997)

    Google Scholar 

  60. Al-Aql, A.A.: Study of the influence of proton irradiation on the transformation temperature of nitinol by electrical resistivity measurements. Physica B 239(3–4), 345–349 (1997)

    Google Scholar 

  61. Wang, Z.G.; Zu, X.T.; Zhu, S.; Huo, Y.; Lin, L.B.; Feng, X. D.; Wang, L. M.: Effect of 18 MeV proton irradiation on the R-phase transformation in TiNi shape memory alloys. Nucl. Instrum. Methods Phys. Res. B 211(2), 239–243 (2003)

    Google Scholar 

  62. Wang, Z.G.; Zu, X.T.; Fu, Y.Q.; Wu, J.H.; Du, H.J.: Effectes of proton irradiation transformation behavior of TiNi shape memory alloy thin films. Thin Solid Films 474(1–2), 322–325 (2005)

    Google Scholar 

  63. Pelton, A.R.; Rrépanier, C.; Gong, X. Y.; Wick, A.; Chen, K. C. In: Proceedings of the ASM Materials & Processes for Medical devices Conference (2003)

  64. Wu S.K., Wayman C.M.: Interstitial ordering of hydrogen and oxygen in TiNi alloys. Acta Metall. 36(4), 1005–1013 (1988)

    Article  Google Scholar 

  65. American Institute of Physics Handbook, Coordinator Editor D. E. Gray, McGraw-Hill, New York, 8 (1972)

  66. Yi, H.C.; Moore, J.J.: A novel technique for producing NiTi shape memory alloy using the thermal explosion mode of combustion synthesis. Mater. Sci. Lett. 8, 1182–1892 (1989)

    Google Scholar 

  67. Rose, M.; Balogh, A. G.; Hahn, H.: Instability of irradiation induced defects in nano structured materials. Nucl. Inst. Methods B pp. 119–122, 127–128 (1997)

  68. Nita N., Schaeublin R., Vectoria M., Valiev R.Z.: Effect of radiation on the microstructure and mechanical properties of nanostructured materials. Philos. Mag., 85, 723–735 (2005)

    Article  Google Scholar 

  69. Sergueeva, A.V.; Sing, C.; Valiev, R.Z.; Mukherjee, A.K.: Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Mater. Sci. Eng. A 339(1–2), 159–165 (2003)

    Google Scholar 

  70. Matsukawa, Y.; Suda, T.; Ohnuki, S.: Microstructural change and mechanical property of neutron irradiated TiNi shape memory alloy. Science report of the Research Insitutes, Tohoku University Ser. A 45(1), 37–40 (1997)

    Google Scholar 

  71. Cheng, J.; Ardell, A.J.: Proton-irradiation-induced crystalline to amorphous transition in a NiTi alloy. Nucl. Instrum. Methods B 44(3), 336–343 (1990)

    Google Scholar 

  72. Buehler, W.J.; Wang, F.E.: A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng. 1(1), 105–108 (1968)

    Google Scholar 

  73. Wang X.Q.: Twinned structure for shape memory: first-principles calculations. Phys. Rev. B 78(9), 092103–092106 (2008)

    Article  Google Scholar 

  74. Afzal, N.; Ghauri, I.M.; Mubarik, F. E.; Amin, F.: Mechanical response of proton beam irradiated nitinol. Physica B 406(1), 8–11 (2011)

    Google Scholar 

  75. Sheriff, J.; Pelton, A. R.; Pruitt, L.A.: Hydrogen effects on nitinol fatigue. In: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, pp. 111–116 (2004)

  76. Undisz, A.; Schrempel, F.; Wesch, W.; Rettenmayr, M.: In situ observation of surface oxide layers on medical grade NiTi alloy during straining. J. Biomedical Mater. Res. 88 A(4), 1000–1009 (2009)

  77. Suhail, A.H.; Ismail, N.; Wong, S.V.; Abdul Jalil, N.A.: Surface roughness identification using the grey relational analysis with multiple performance characteristics in turning operations. AJSM 37(4):1111–1117 (2012)

    Google Scholar 

  78. Kök M.: Modeling and assessment of some factors that influence surface roughness for the machining of particle reinforced metal matrix composites. AJSM 36(7), 1347–1365 (2011)

    Google Scholar 

  79. Akkurt, I.; Akyıldırım, H.; Calik, A.; Aytar, O. B.; Uçar, N.: γ-ray attenuation coefficient of microalloyed sstainless steel. AJSM 36(1), 145–149 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Dughaish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dughaish, Z.H. Effect of Proton Irradiation on Some Physical Properties of Nitinol (NiTi) Shape Memory Alloy: A Review. Arab J Sci Eng 39, 511–524 (2014). https://doi.org/10.1007/s13369-013-0878-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0878-5

Keywords

Navigation