Skip to main content
Log in

The heating–cooling rate effect on thermal properties of high nickel-rich NiTi shape memory alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the effects of heating and cooling rate on the thermal properties of high nickel-rich Ni55Ti45 shape memory alloy were investigated. Transformation temperatures and enthalpies were determined by differential scanning calorimetry. R-phase was observed with two-stage phase transformation during cooling. Transformation finish temperatures were affected, while the transformation start temperatures were not changed by heating–cooling rate. Kissinger, Takhor, and Ozawa methods were applied to find activation energy that is needed for phase transformation. The average activation energy value of 200.5 kJ mol−1 was calculated for Ni55Ti45 alloy. The calculated activation energy was found lower than the ones reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511–678.

    Article  CAS  Google Scholar 

  2. Aboutalebi MR, Karimzadeh M, Salehi MT, Abbasi SM, Morakabati M. Influences of aging and thermomechanical treatments on the martensitic transformation and superelasticity of highly Ni-rich Ti-51.5 at.% Ni shape memory alloy. Thermochimica Acta. 2015;616:14–9.

    Article  CAS  Google Scholar 

  3. Otsuka K, Sawamura T, Shimizu K. Crystal structure and internal defects of equiatomic TiNi martensite. Phys Status Solidi (a). 1971;5(2):457–70.

    Article  CAS  Google Scholar 

  4. Oshida Y, Miyazaki S. Corrosion and biocompatibility of shape memory alloys. Zairyo-to-Kankyo. 1991;40(12):834–44.

    Article  CAS  Google Scholar 

  5. Shida Y, Sugimoto Y. Water jet erosion behaviour of Ti–Ni binary alloys. Wear. 1991;146(2):219–28.

    Article  CAS  Google Scholar 

  6. Li DY. Wear behavior of TiNi shape memory alloys. Scr Mater. 1996;34(2):195–200.

    Article  CAS  Google Scholar 

  7. Lin HC, He JL, Chen KC, Liao HM, Lin KM. Wear characteristics of TiNi shape memory alloys. Metallur Mater Trans A. 1997;28(9):1871–7.

    Article  Google Scholar 

  8. Hartl DJ, Lagoudas DC. Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G J Aerosp Eng. 2007;221(4):535–52.

    Article  CAS  Google Scholar 

  9. Deberg L, Taheri Andani M, Hosseinipour M, Elahinia M. An SMA passive ankle foot orthosis: design, modeling, and experimental evaluation. Smart Mater Res. 2014. https://doi.org/10.1155/2014/572094.

    Article  Google Scholar 

  10. El Feninat F, Laroche G, Fiset M, Mantovani D. Shape memory materials for biomedical applications. Adv Eng Mater. 2002;4(3):91–104.

    Article  Google Scholar 

  11. Chau ETF, Friend CM, Allen DM, Hora J, Webster JR. A technical and economic appraisal of shape memory alloys for aerospace applications. Mater Sci Eng, A. 2006;438–440:589–92.

    Article  Google Scholar 

  12. Brantley WA, Iijima M, Grentzer TH. Temperature-modulated DSC study of phase transformations in nickel–titanium orthodontic wires. Thermochim Acta. 2002;392–393:329–37.

    Article  Google Scholar 

  13. Florian G, Gabor AR, Nicolae CA, Iacobescu G, Stănică N, Mărăşescu P, et al. Physical properties (thermal, thermomechanical, magnetic, and adhesive) of some smart orthodontic wires. J Therm Anal Calorim. 2018;134(1):189–208.

    Article  CAS  Google Scholar 

  14. Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MF-X, Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 2010;58(9):3444–58.

    Article  CAS  Google Scholar 

  15. Karaca HE, Kaya I, Tobe H, Basaran B, Nagasako M, Kainuma R, et al. Shape memory behavior of high strength Ni54Ti46 alloys. Mater Sci Eng, A. 2013;580:66–70.

    Article  CAS  Google Scholar 

  16. Padula S, Qiu S, Gaydosh D, Noebe R, Bigelow G, Garg A, et al. Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi. Metallur Mater Trans A. 2012;43(12):4610–21.

    Article  CAS  Google Scholar 

  17. Nishida M, Wayman CM, Honma T. Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall Trans A. 1986;17(9):1505–15.

    Article  Google Scholar 

  18. Kaya I, Tobe H, Karaca HE, Basaran B, Nagasako M, Kainuma R, et al. Effects of aging on the shape memory and superelasticity behavior of ultra-high strength Ni54Ti46 alloys under compression. Mater Sci Eng, A. 2016;678:93–100.

    Article  CAS  Google Scholar 

  19. Motemani Y, Nili-Ahmadabadi M, Tan MJ, Bornapour M, Rayagan S. Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy. J Alloy Compd. 2009;469(1–2):164–8.

    Article  CAS  Google Scholar 

  20. Kim JI, Liu Y, Miyazaki S. Ageing-induced two-stage R-phase transformation in Ti–50.9 at.% Ni. Acta Mater. 2004;52(2):487–99.

    Article  CAS  Google Scholar 

  21. Dlouhy A, Khalil-Allafi J, Eggeler G. Multiple-step martensitic transformations in Ni-rich NiTi alloys—an in situ transmission electron microscopy investigation. Phil Mag. 2003;83(3):339–63.

    Article  CAS  Google Scholar 

  22. Antonucci V, Faiella G, Giordano M, Mennella F, Nicolais L. Electrical resistivity study and characterization during NiTi phase transformations. Thermochim Acta. 2007;462(1–2):64–9.

    Article  CAS  Google Scholar 

  23. Kök M, Yakinci ZD, Aydogdu A, Aydogdu Y. Thermal and magnetic properties of Ni51Mn28. 5Ga19. 5B magnetic-shape-memory alloy. J Therm Anal Calorim. 2014;115(1):555–9.

    Article  Google Scholar 

  24. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  25. Takhor RL. Advances in nucleation and crystallization of glasses. Columbus: American Ceramics Society; 1971. p. 166.

    Google Scholar 

  26. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  27. Salzbrenner RJ, Cohen M. On the thermodynamics of thermoelastic martensitic transformations. Acta Metall. 1979;27(5):739–48.

    Article  CAS  Google Scholar 

  28. Tong HC, Wayman CM. Thermodynamics of thermoelastic martensitic transformations. Acta Metall. 1975;23(2):209–15.

    Article  CAS  Google Scholar 

  29. Dlouhý A, Bojda O, Somsen C, Eggeler G. Conventional and in situ transmission electron microscopy investigations into multistage martensitic transformations in Ni-rich NiTi shape memory alloys. Mater Sci Eng, A. 2008;481–482:409–13.

    Article  Google Scholar 

  30. Hamilton RF, Sehitoglu H, Chumlyakov Y, Maier HJ. Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater. 2004;52(11):3383–402.

    Article  CAS  Google Scholar 

  31. Paryab M, Nasr A, Bayat O, Abouei V, Eshraghi A. Effect of heat treatment on the microstructural and superelastic behavior of NiTi alloy with wt% Ni. Metal. 2010;16(2):123–31.

    CAS  Google Scholar 

  32. Acar E. The determination of the phase transformations and the activation energies in TiNi smart alloys. Gazi Univ Sci J Part C Des Technol. 2016;4(3):165–71.

    Google Scholar 

  33. Dağdelen F, Buytoz S, Akbaş İ. The effects on thermal and microstructure properties of Cu addition in NiTi SMAs. Fırat Univ J Eng Sci. 2017;29(1):269–75.

    Google Scholar 

  34. Dagdelen F, Aydogdu Y. Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs. J Therm Anal Calorim. 2019;136(2):637–42.

    Article  CAS  Google Scholar 

  35. Natalia R, Sergey B. Entropy change in the B2 → B19′ martensitic transformation in TiNi alloy. Thermochim Acta. 2015;602:30–5.

    Article  CAS  Google Scholar 

  36. Wang ZG, Zu XT, Huo Y. Effect of heating/cooling rate on the transformation temperatures in TiNiCu shape memory alloys. Thermochim Acta. 2005;436(1–2):153–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First author acknowledges the support from Eskisehir Technical University (Grant No. BAP-1706F382).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Kaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, I., Özdemir, Y., Kaya, E. et al. The heating–cooling rate effect on thermal properties of high nickel-rich NiTi shape memory alloy. J Therm Anal Calorim 139, 817–822 (2020). https://doi.org/10.1007/s10973-019-08511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08511-2

Keywords

Navigation