Skip to main content

Advertisement

Log in

Experimental measles encephalitis in Lewis rats: dissemination of infected neuronal cell subtypes

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Acute measles may lead in rare instances to the chronic progressive central nervous system disease process subacute sclerosing panencephalitis (SSPE). SSPE results from a persistent measles virus (MV) infection with incomplete virus replication involving the entire human brain. The experimental encephalitis model in Lewis rats was used to define affected cell populations after infection with the neurotropic MV strain CAM/RB. Distribution patterns of MV were analysed by appropriate cell markers in the brain sections of infected animals employing multiple immunofluorescence labelling and confocal laser scanning microscopy. MV was detected in neurones but not in astrocytes, oligodendrocytes, microglia, and endothelial cells. GABAergic and glutamatergic neurons displayed MV antigen whereas cholinergic and catecholaminergic neurons appeared devoid of MV immunoreactivity. Mapping of the rat brain has revealed MV-infected neurones predominantly in motor, somatosensory, auditory, and visual cortices as well as in the basal ganglia and thalamic nuclei of infected rats. The results indicate that MV apparently disseminates via GABAergic and glutaminergic neurones and their processes. The tightly restricted viral distribution pattern is consistent with both inefficient immune clearance from infected neurones and with the observed disease symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdullah H, Earle JA, Gardiner TA, Tangy F, Cosby SL (2009) Persistent measles virus infection of mouse neural cells lacking known human entry receptors. Neuropathol Appl Neurobiol 35:473–486

    Article  PubMed  CAS  Google Scholar 

  • Abdullah H, Brankin B, Brady C, Cosby SL (2013) Wild-type measles virus infection upregulates poliovirus receptor-related 4 and causes apoptosis in brain endothelial cells by induction of tumor necrosis factor-related apoptosis ligand. J Neuropathol Exp Neurol 72:681–696

    Article  PubMed  Google Scholar 

  • Acarin L, Vela JM, González B, Castellano B (1994) Demonstration of poly-N-acetyl lactosamine residues in ameboid and ramified microglial cells in rat brain by tomato lectin binding. J Histochem Cytochem 42:1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Allen IV, McQuaid S, McMahon J, Kirk J, McConnell R (1996) The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. J Neuropathol Exp Neurol 55:471–480

    Article  PubMed  CAS  Google Scholar 

  • Andres O, Obojes K, Kim KS, ter Meulen V, Schneider-Schaulies J (2003) CD46- and CD150-independent endothelial cell infection with wild-type measles viruses. J Gen Virol 84:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18:8648–8659

    PubMed  CAS  Google Scholar 

  • Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT Jr, Edwards RH, Storm-Mathisen J, Chaudhry F (2004) Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 480:264–280

    Article  PubMed  CAS  Google Scholar 

  • Burrows GG, Bebo BF, Adlard KL, Vandenbark AA, Ofner H (1998) Two-domain MHC II molecules form stable complexes with myelin basic protein 69–89 peptide that detect and inhibit rat encephalitogenic T cells and treat experimental autoimmune encephalomyelitis. J Immunol 16:5987–5996

    Google Scholar 

  • Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205

    Article  PubMed  CAS  Google Scholar 

  • Cassiani-Ingoni R, Greenstone HL, Donati D, Fogdell-Hahn A, Martinelli E, Refai D, Martin R, Berger EA, Jacobson S (2005) CD46 on glial cells can function as a receptor for viral glycoprotein-mediated cell-cell fusion. Glia 52:252–258

    Article  PubMed  Google Scholar 

  • Chaudhry FA, Reimer RJ, Bellocchio EZ, Danboldt NC, Osen KK, Edwards RH, Storm-Mathisen J (1998) The vesicular GABA transporter, VGAT, localises to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18:9733–9750

    PubMed  CAS  Google Scholar 

  • Cueva JG, Haverkamp S, Reimer RJ, Edwards R, Wässle H, Brecha NC (2002) Vesicular gamma-aminobutyric acid transporter expression in amacrine and horizontal cells. J Com Neurol 445:227–237

    Article  CAS  Google Scholar 

  • Dijkstra CD, Döpp EA, Joling P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54:589–599

    PubMed  CAS  Google Scholar 

  • Duprex WP, McQuaid S, Rima BK (2000) Measles virus-induced disruption of the glial-fibrillary-acidic protein cytoskeleton in an astrocytoma cell line (U-251). J Virol 74:3874–3880

    Article  PubMed  CAS  Google Scholar 

  • Esiri MM, Oppenheimer DR, Brownell B, Haire M (1982) Distribution of measles antigen and immunoglobulin-containing cells in the CNS in subacute sclerosing panencephalitis (SSPE) and atypical measles encephalitis. J Neurol Sci 53:29–43

    Article  PubMed  CAS  Google Scholar 

  • Foster AC, Kemp JA (2006) Glutamate- and GABA-based CNS therapeutics. Curr Opin Pharmacol 6:7–17

    Article  PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260

    Article  PubMed  CAS  Google Scholar 

  • Friedman HM, Macarak EJ, MacGregor RR, Wolfe J, Kefalides NA (1981) Virus infection of endothelial cells. J Infect Dis 143:266–273

    Article  PubMed  CAS  Google Scholar 

  • Griffin DE, Oldstone MB (2009) Measles. History and basic biology. Introduction. Curr Top Microbiol Immunol 329:1

    PubMed  Google Scholar 

  • Halliday GM, Cullen KM, Kril JJ, Harding AJ, Harasty J (1996) Glial fibrillary acidic protein (GFAP) immunohistochemistry in human cortex: a quantitative study using different antisera. Neurosci Lett 209:29–32

    Article  PubMed  CAS  Google Scholar 

  • Härtig W, Riedel A, Grosche J, Edwards RH, Fremeau RT Jr, Harkany T, Brauer K, Arendt T (2003) Complementary distribution of vesicular glutamate transporters 1 and 2 in the nucleus accumbens of rat: relationship to calretinin-containing extrinsic innervation and calbindin-immunoreactive neurons. J Comp Neurol 465:1–10

    Article  PubMed  Google Scholar 

  • Härtig W, Stieler J, Boerema AS, Wolf J, Schmidt U, Weissfuss J, Bullmann T, Strijkstra AM, Arendt T (2007) Hibernation model of tau phosphorylation in hamsters: selective vulnerability of cholinergic basal forebrain neurons—implications for Alzheimer’s disease. Eur J Neurosci 25:69–80

    Article  PubMed  Google Scholar 

  • Harkany T, Härtig W, Berghuis P, Dobszay MB, Zilberter Y, Edwards RH, Mackie K, Ernfors P (2003) Complementary distribution of type 1 cannabinoid receptors and vesicular glutamate transporter 3 in basal forebrain suggests input-specific retrograde signalling by cholinergic neurons. Eur J Neurosci 18:1979–1992

    Article  PubMed  Google Scholar 

  • Haycock JW (1987) Stimulation-dependent phosphorylation of tyrosine hydroxylase in rat corpus striatum. Brain Res Bull 19:619–622

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862

    Article  PubMed  CAS  Google Scholar 

  • Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9

    Article  PubMed  CAS  Google Scholar 

  • Kägi U, Berchtold MW, Heizmann CW (1987) Ca2+-binding parvalbumin in rat testis. Characterization, localization, and expression during development. J Biol Chem 262:7314–7320

    PubMed  Google Scholar 

  • Kirk J, Zhou AL, McQuaid S, Cosby SL, Allen IV (1991) Cerebral endothelial cell infection by measles virus in subacute sclerosing panencephalitis: ultrastructural and in situ hybridization evidence. Neuropathol Appl Neurobiol 17:289–297

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Zimprich F, Vass K, Hickey WF (1991) Microglial cells are a component of the perivascular glia limitans. J Neurosci Res 28:236–243

    Article  PubMed  CAS  Google Scholar 

  • Lehrmann E, Guidetti P, Löve A, Williamson J, Bertram EH, Schwarcz R (2008) Glial activation precedes seizures and hippocampal neurodegeneration in measles virus-infected mice. Epilepsia 49(Suppl 2):13–23

    Article  PubMed  Google Scholar 

  • Leifer D, Kowall NW (1993) Immunohistochemical patterns of selective cellular vulnerability in human cerebral ischemia. J Neurol Sci 119:217–228

    Article  PubMed  CAS  Google Scholar 

  • Lewandowska E, Wierzba-Bobrowicz T, Kosno-Kruszewska E, Lechowicz W, Schmidt-Sidor B, Szpak GM, Bertrand E, Pasennik E, Gwiazda E (2004) Ultrastructural evaluation of activated forms of microglia in human brain in selected neurological diseases (SSPE, Wilson’s disease and Alzheimer’s disease). Folia Neuropathol 42:81–91

    PubMed  Google Scholar 

  • Liebert UG (1997) Measles virus infections of the central nervous system. Intervirology 40:176–184

    Article  PubMed  CAS  Google Scholar 

  • Liebert UG (2001) Slow and persistent virus infections of neurons—a compromise for neuronal survival. Curr Top Microbiol Immunol 253:35–60

    Article  PubMed  CAS  Google Scholar 

  • Liebert UG, Baczko K, Budka H, ter Meulen V (1986) Restricted expression of measles virus proteins in brains from cases of subacute sclerosing panencephalitis. J Gen Virol 67:2435–2444

    Article  PubMed  CAS  Google Scholar 

  • Liebert UG, ter Meulen V (1987) Virological aspects of measles virus-induced encephalomyelitis in Lewis and BN rats. J Gen Virol 68:1715–1722

    Article  PubMed  CAS  Google Scholar 

  • Liebert UG, Finke D (1995) Measles virus infections in rodents. Curr Top Microbiol Immunol 191:149–166

    Article  PubMed  CAS  Google Scholar 

  • MacGregor RR, Friedman HM, Macarak EJ, Kefalides NA (1980) Virus infection of endothelial cells increases granulocyte adherence. J Clin Invest 65:1469–1477

    Article  PubMed  CAS  Google Scholar 

  • Makhortova NR, Askovich P, Patterson CE, Gechman LA, Gerard NP, Rall GF (2007) Neurokinin-1 enables measles-virus transsynaptic spread in neurons. Virology 362:235–244

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H, Kumon Y, Watanabe H, Ohnishi T, Shudon M, Li C, Takahashi H, Ismai Y, Tanaka J (2007) Antibodies to CD11b, CD68, and lection label neutrophils rather than microglia in traumatic and ischemic brain lesions. J Neurosci Res 85:994–1009

    Article  PubMed  CAS  Google Scholar 

  • McQuaid S, Cosby SL (2002) An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab Invest 82:403–409

    Article  PubMed  CAS  Google Scholar 

  • Mesquita R, Castaños-Velez E, Biberfeld P, Troian RM, de Siqueira MM (1998) Measles virus antigen in macrophage/microglial cells and astrocytes of subacute sclerosing panencephalitis. APMIS 106:553–561

    Article  PubMed  CAS  Google Scholar 

  • Moult PR (2009) Neuronal glutamate and GABA receptor function in health and disease. Biochem Soc Trans 37:1317–1322

    Article  PubMed  CAS  Google Scholar 

  • Mühlebach MD, Mateo M, Sinn PL, Prüfer S, Uhlig KM, Leonard VH, Navaratnarajah CK, Frenzke M, Wong XX, Sawatsky B, Ramachandran S, McCray PB, Cichutek K, von Messling V, Lopez M, Cattaneo R (2011) Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nat Geosci 480:530–533

    Google Scholar 

  • Mustafa MM, Weitman SD, Winick NJ, Bellini WJ, Timmons CF, Siegel JD (1993) Subacute measles encephalitis in the young immunocompromised host: report of two cases diagnosed by polymerase chain reaction and treated with ribavirin and review of the literature. Clin Infect Dis 16:654–660

    Article  PubMed  CAS  Google Scholar 

  • Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. Virology 67:6025–6032

    CAS  Google Scholar 

  • Noyce RS, Bondre DG, Ha MN, Lin LT, Sisson G, Trao MS, Richardson CD (2011) Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog 7:e1002240

    Article  PubMed  CAS  Google Scholar 

  • Nullmeier S, Panther P, Dobrowolny H, Frotscher M, Zhao S, Schwegler H, Wolf R (2011) Region-specific alteration of GABAergic markers in the brain of heterozygous reeler mice. Eur J Neurosci 33:689–698

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MB (2009) Modelling subacute sclerosing panencephalitis in a transgenic mouse system: uncoding pathogenesis of disease and illuminating components of immune control. Curr Top Microbiol Immunol 330:31–54

    Article  PubMed  CAS  Google Scholar 

  • Oglesbee M, Niewiesk S (2011) Measles virus neurovirulence and host immunity. Future Virol 6:85–99

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego

    Google Scholar 

  • Plumb J, Duprex WP, Cameron CH, Richter-Landsberg C, Talbot P, McQuaid S (2002) Infectiion of human oligodendroglioma cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Neurovirol 8:24–34

    Article  PubMed  Google Scholar 

  • Reuter D, Schneider-Schaulies J (2010) Measles virus infections of the central nervous system: human disease, animal models, and approaches to therapy. Med Microbiol Immunol 199:261–271

    Article  PubMed  CAS  Google Scholar 

  • Riedel A, Härtig W, Seeger G, Gärtner U, Brauer K, Arendt T (2002) Principles of rat subcortical forebrain organization: a study using histological techniques and multiple fluorescence labeling. J Chem Neuroanat 23:75–104

    Article  PubMed  CAS  Google Scholar 

  • Rima B, Duprex P (2005) Molecular mechanisms of measles virus persistence. Virus Res 111:132–147

    Article  PubMed  CAS  Google Scholar 

  • Robinson AP, White TM, Mason DW (1986) Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 57:239–247

    PubMed  CAS  Google Scholar 

  • Schneider-Schaulies S, Liebert UG, Baczko K, ter Meulen V (1990) Restricted expression of measles virus in primary rat astroglial cells. Virology 177:802–806

    Article  PubMed  CAS  Google Scholar 

  • Schwaller B, Buchwald P, Blümcke I, Celio MR, Hunziker W (1993) Characterization of a polyclonal antiserum against the purified human recombinant calcium binding protein calretinin. Cell Calcium 14:639–648

    Article  PubMed  CAS  Google Scholar 

  • Stanley BG, Urstadt KR, Charles JK, Kee T (2011) Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake. Physiol Behav 104:40–46

    Article  PubMed  CAS  Google Scholar 

  • Takamori S, Riedel D, Jahn R (2000) Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles. J Neurosci 20:4904–4911

    PubMed  CAS  Google Scholar 

  • Takasu T, Mgone JM, Mgone CS, Miki K, Komase K, Namae H, Saito Y, Kokubun Y, Nishimura T, Kawanishi R, Mizutani T, Markus TJ, Kono J, Asuo PG, Alpers MP (2003) A continuing high incidence of subacute sclerosing panencephalitis (SSPE) in the Eastern Highlands of Papua New Guinea. Epidemiol Infect 131:887–898

    Article  PubMed  CAS  Google Scholar 

  • Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nat Geosci 406:893–897

    CAS  Google Scholar 

  • Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J (1983) PGP 9.5- a new marker for vertebrate neurons and neuroendocrine cells. Brain Res 278:224–228

    Article  PubMed  CAS  Google Scholar 

  • Varea E, Nácher J, Blasco-Ibáñez JM, Gómez-Climent MA, Castillo-Gómez E, Crespo C, Martínez-Guijarro FJ (2005) PSA-NCAM expression in the rat medial prefrontal cortex. Neuroscience 136:435–443

    Article  PubMed  CAS  Google Scholar 

  • Watanabe A, Yoneda M, Ikeda F, Terao-Muto Y, Sato H, Kai C (2010) CD147/EMMPRIN acts as a functional entry receptor for measles virus on epithelial cells. J Virol 84:4183–4193

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J (1989) The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246:670–673

    Article  PubMed  CAS  Google Scholar 

  • Yanagi Y, Takeda M, Ohno S, Seki F (2006) Measles virus receptors and tropism. Jpn J Infect Dis 59:1–5

    PubMed  CAS  Google Scholar 

  • Young VA, Rall GF (2009) Making it to the synapse: measles virus spread in and among neurons. Curr Top Microbiol Immunol 330:3–30

    Article  PubMed  CAS  Google Scholar 

  • Zander JF, Münster-Wandowski A, Brunk I, Pahner I, Gómez-Lira G, Heinemann U, Gutiérrez R, Laube G, Ahnert-Hilger G (2010) Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J Neurosci 30:7634–7645

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe G. Liebert.

Additional information

Ulrike Jehmlich, Jennifer Ritzer, Wolfgang Härtig, and Uwe G. Liebert contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jehmlich, U., Ritzer, J., Grosche, J. et al. Experimental measles encephalitis in Lewis rats: dissemination of infected neuronal cell subtypes. J. Neurovirol. 19, 461–470 (2013). https://doi.org/10.1007/s13365-013-0199-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-013-0199-1

Keywords

Navigation