Skip to main content

Advertisement

Log in

Measles virus infection of the CNS: human disease, animal models, and approaches to therapy

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Viral infections of the central nervous system (CNS) mostly represent clinically important, often life-threatening complications of systemic viral infections. After acute measles, CNS complications may occur early (acute postinfectious measles encephalitis, APME) or after years of viral persistence (subacute sclerosing panencephalitis, SSPE). In spite of a presumably functional cell-mediated immunity and high antiviral antibody titers, an immunological control of the CNS infection is not achieved in patients suffering from SSPE. There is still no specific therapy for acute complications and persistent MV infections of the CNS. Hamsters, rats, and (genetically unmodified and modified) mice have been used as model systems to study mechanisms of MV-induced CNS infections. Functional CD4+ and CD8+ T cells together with IFN-γ are required to overcome the infection. With the help of recombinant measles viruses and mice expressing endogenous or transgenic receptors, interesting aspects such as receptor-dependent viral spread and viral determinants of virulence have been investigated. However, many questions concerning the lack of efficient immune control in the CNS are still open. Recent research opened new perspectives using specific antivirals such as short interfering RNA (siRNA) or small molecule inhibitors. In spite of obvious hurdles, these treatments are the most promising approaches to future therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rima BK, Duprex WP (2006) Morbilliviruses and human disease. J Pathol 208(2):199–214

    PubMed  CAS  Google Scholar 

  2. de Swart RL, Ludlow M, de Witte L, Yanagi Y, van Amerongen G, McQuaid S, Yuksel S, Geijtenbeek TB, Duprex WP, Osterhaus AD (2007) Predominant infection of CD150(+) lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 3(11):e178

    PubMed  Google Scholar 

  3. Nanan R, Chittka B, Hadam M, Kreth HW (1999) Measles virus infection causes transient depletion of activated T cells from peripheral circulation. J Clin Virol 12:201–210

    PubMed  CAS  Google Scholar 

  4. Schneider-Schaulies S, Schneider-Schaulies J (2009) Measles virus-induced immunosuppression. Curr Top Microbiol Immunol 330:243–269

    PubMed  CAS  Google Scholar 

  5. Ludlow M, Allen I, Schneider-Schaulies J (2009) Systemic spread of measles virus: overcoming the epithelial and endothelial barriers. Thromb Haemost 102(6):1050–1056

    PubMed  CAS  Google Scholar 

  6. Kirk J, Zhou AL, McQuaid S, Cosby SL, Allen IV (1991) Cerebral endothelial cell infection by measles virus in subacute sclerosing panencephalitis: ultrastructural and in situ hybridization evidence. Neuropathol Appl Neurobiol 17:289–297

    PubMed  CAS  Google Scholar 

  7. Allen IV, McQuaid S, McMahon J, Kirk J, McConnell R (1996) The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. J Neuropathol Exp Neurol 55:471–480

    PubMed  CAS  Google Scholar 

  8. McQuaid S, Cosby SL (2002) An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab Invest 82:1–7

    Google Scholar 

  9. Rudd PA, Cattaneo R, von Messling V (2006) Canine distemper virus uses both the anterograde and the hematogenous pathway for neuroinvasion. J Virol 80(19):9361–9370

    PubMed  CAS  Google Scholar 

  10. Dittmar S, Harms H, Runkler N, Maisner A, Kim KS, Schneider-Schaulies J (2008) Measles virus-induced block of transendothelial migration of T lymphocytes and infection-mediated virus spread across endothelial cell barriers. J Virol 82(22):11273–11282

    PubMed  CAS  Google Scholar 

  11. Weissbrich B, Schneider-Schaulies J, ter Meulen V (2003) Measles and its neurological complications. Marcel Dekker, New York

    Google Scholar 

  12. Nakayama T, Mori T, Yamaguchi S, Sonoda S, Asamura S, Yamashity R, Takeuchi Y, Urano T (1995) Detection of measles virus genome directly from clinical samples by reverse transcriptase-polymerase chain reaction and genetic variability. Virus Res 35:1–16

    PubMed  CAS  Google Scholar 

  13. Esolen LM, Takahashi K, Johnson RT, Vaisberg A, Moench TR, Wesselingh SL, Griffin DE (1995) Brain endothelial cell infection in children with acute fatal measles. J Clin Invest 96:2478–2481

    PubMed  CAS  Google Scholar 

  14. Liebert UG (1997) Measles virus infections of the central nervous system. Intervirology 40:176–184

    PubMed  CAS  Google Scholar 

  15. ter Meulen V, Stephenson JR, Kreth HW (1983) Subacute sclerosing panencephalitis. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive virology. Plenum Press, New York, pp 105–159

    Google Scholar 

  16. Takasu T, Mgone JM, Mgone CS, Miki K, Komase K, Namae H, Saito Y, Kokubun Y, Nishimura T, Kawanishi R, Mizutani T, Markus TJ, Kono J, Asuo PG, Alpers MP (2003) A continuing high incidence of subacute sclerosing panencephalitis (SSPE) in the eastern highlands of Papua New Guinea. Epidemiol Infect 131:887–898

    PubMed  CAS  Google Scholar 

  17. Bellini WJ, Rota JS, Lowe LE, Katz RS, Dyken PR, Zaki SR, Shieh W-J, Rota PA (2005) Subacute sclerosing panencephalitis: More cases of this fatal disease are prevented by measles immunization than previously recognized. J Infect Dis 192:1686–1693

    PubMed  Google Scholar 

  18. Garg RK (2008) Subacute sclerosing panencephalitis. J Neurol 255(12):1861–1871

    PubMed  Google Scholar 

  19. Dörries R, ter Meulen V (1984) Detection and identification of virus specific oligoclonal IgG in unconcentrated cerebrospinal fluid by immuno blot technique. J Neuroimmunol 7:77–89

    PubMed  Google Scholar 

  20. Pohl-Koppe A, Kaiser R, Meulen VT, Liebert UG (1995) Antibody reactivity to individual structural proteins of measles virus in the CSF of SSPE and MS patients. Clin Diagn Virol 4(2):135–147

    PubMed  CAS  Google Scholar 

  21. Rima BK, Earle JAP, Baczko K, ter Meulen V, Carabana J, Caballero M, Celma ML, Fernandez-Munoz R (1997) Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol 78:97–106

    PubMed  CAS  Google Scholar 

  22. Jin L, Beard S, Hunjan R, Brown D, Miller E (2002) Characterization of measles virus strains causing SSPE: a study of 11 cases. J Neurovirol 8:335–344

    PubMed  CAS  Google Scholar 

  23. Forcic D, Baricevic M, Zgorelec R, Kruzic V, Kaic B, Marina BM, Sojat LC, Tesovic G, Mazuran R (2004) Detection and characterization of measles virus strains in cases of subacute sclerosing panencephalitis in Croatia. Virus Res 99(1):51–56

    PubMed  CAS  Google Scholar 

  24. Ogura H, Ayata M, Hayashi K, Seto T, Matsuoka O, Hattori H, Tanaka K, Tanaka K, Takano Y, Murata R (1997) Efficient isolation of subacute sclerosing panencephalitis virus from patient brains by reference to magnetic resonance and computed tomographic images. J Neurovirol 3:304–309

    PubMed  CAS  Google Scholar 

  25. Ito N, Ayata M, Shingai M, Furukawa K, Seto T, Matsunaga I, Muraoka M, Ogura H (2002) Comparison of the neuropathogenicity of two SSPE sibling viruses of the Osaka-2 strain isolated with Vero and B95a cells. J Neurovirol 8:6–13

    PubMed  Google Scholar 

  26. Hotta H, Nihei K, Abe Y, Kato S, Jiang DP, Nagano-Fujii M, Sada K (2006) Full-length sequence analysis of subacute sclerosing panencephalitis (SSPE) virus, a mutant of measles virus, isolated from brain tissues of a patient shortly after onset of SSPE. Microbiol Immunol 50(7):525–534

    PubMed  CAS  Google Scholar 

  27. Patterson JB, Cornu TI, Redwine J, Dales S, Lewicki H, Holz A, Thomas D, Billeter MA, Oldstone MBA (2001) Evidence that hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively contributes to the chronic progressive CNS disease. Virology 291:215–225

    PubMed  CAS  Google Scholar 

  28. Duclos P, Ward BJ (1998) Measles vaccines. A review of adverse events. Drug Experience 6:435–454

    Google Scholar 

  29. Campbell H, Andrews N, Brown KE, Miller E (2007) Review of the effect of measles vaccination on the epidemiology of SSPE. Int J Epidemiol 36(6):1334–1348

    PubMed  CAS  Google Scholar 

  30. Joseph B, Oldstone M (1974) Antibody-induced redistribution of measles virus antigens on the cell surface. J Immunol 113(4):1205–1209

    PubMed  CAS  Google Scholar 

  31. Fujinami RS, Oldstone MB (1980) Alterations in expression of measles virus polypeptides by antibody: molecular events in antibody-induced antigenic modulation. J Immunol 125(1):78–85

    PubMed  CAS  Google Scholar 

  32. Barrett PN, Koschel K, Carter M, ter Meulen V (1985) Effect of measles virus antibodies on a measles SSPE virus persistently infected C6 rat glioma cell line. J Gen Virol 66:1411–1421

    PubMed  Google Scholar 

  33. Schneider-Schaulies S, Liebert UG, Segev Y, Rager-Zisman B, Wolfson M, ter Meulen V (1992) Antibody-dependent transcriptional regulation of measles virus in persistently infected neural cells. J Virol 66(9):5534–5541

    PubMed  CAS  Google Scholar 

  34. Inoue T, Kira R, Nakao F, Ihara K, Bassuny WM, Kusuhara K, Nihei K, Takeshita K, Hara T (2002) Contribution of the interleukin 4 gene to susceptibility to subacute sclerosing panencephalitis. Arch Neurol 59(5):822–827

    PubMed  Google Scholar 

  35. Torisu H, Kusuhara K, Kira R, Bassuny WM, Sakai Y, Sanefuji M, Takemoto M, Hara T (2004) Functional MxA promoter polymorphism associated with subacute sclerosing panencephalitis. Neurology 62(3):457–460

    PubMed  CAS  Google Scholar 

  36. Pipo-Deveza JR, Kusuhara K, Silao CL, Lukban MB, Salonga AM, Sanchez BC, Kira R, Takemoto M, Torisu H, Hara T (2006) Analysis of MxA, IL-4, and IRF-1 genes in Filipino patients with subacute sclerosing panencephalitis. Neuropediatrics 37(4):222–228

    PubMed  CAS  Google Scholar 

  37. Yilmaz V, Demirbilek V, Gurses C, Yentur SP, Uysal S, Yapici Z, Yilmaz G, Muncey A, Cokar O, Onal E, Gokyigit A, Saruhan-Direskeneli G (2007) Interleukin (IL)-12, IL-2, interferon-gamma gene polymorphisms in subacute sclerosing panencephalitis patients. J Neurovirol 13(5):410–415

    PubMed  CAS  Google Scholar 

  38. Ishizaki Y, Takemoto M, Kira R, Kusuhara K, Torisu H, Sakai Y, Sanefuji M, Yukaya N, Hara T (2008) Association of toll-like receptor 3 gene polymorphism with subacute sclerosing panencephalitis. J Neurovirol 1–6

  39. Schnorr JJ, Schneider-Schaulies S, Simon-Jodicke A, Pavlovic J, Horisberger MA, ter Meulen V (1993) MxA-dependent inhibition of measles virus glycoprotein synthesis in a stably transfected human monocytic cell line. J Virol 67(8):4760–4768

    PubMed  CAS  Google Scholar 

  40. Schneider-Schaulies S, Schneider-Schaulies J, Schuster A, Bayer M, Pavlovic J, ter Meulen V (1994) Cell type-specific MxA-mediated inhibition of measles virus transcription in human brain cells. J Virol 68(11):6910–6917

    PubMed  CAS  Google Scholar 

  41. Lampe JB, Schneider-Schaulies S, Aguzzi A (2003) Expression of the interferon-induced MxA protein in viral encephalitis. Neuropathol Appl Neurobiol 29:273–279

    PubMed  CAS  Google Scholar 

  42. Ogata S, Ogata A, Schneider-Schaulies S, Schneider-Schaulies J (2004) Expression of the interferon-a/b-inducible MxA protein in and around lesions of subacute sclerosing panencephalitis (SSPE) brains. Acta Neuropathol 223:113–119

    CAS  Google Scholar 

  43. Dhib-Jalbut S, Xia J, Rangaviggula H, Fang Y-Y, Lee T (1999) Failure of measles virus to activate nuclear factor-KB in neuronal cells: implications on the immune response to viral infections in the central nervous system. J Immunol 162:4024–4029

    PubMed  CAS  Google Scholar 

  44. Fang Y-Y, Song Z-M, Dhib-Jalbut S (2001) Mechanism of measles virus failure to activate NFk-B in neuronal cells. J Neurovirol 7:25–34

    PubMed  CAS  Google Scholar 

  45. Naniche D, Yeh A, Eto D, Manchester M, Friedman RM, Oldstone MBA (2000) Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of alpha/beta interferon production. J Virol 74:7478–7484

    PubMed  CAS  Google Scholar 

  46. Hara T, Yamashita S, Aiba H, Nihei K, Koide N, Good RA, Takeshita K (2000) Measles virus-specific T helper 1/T helper 2-cytokine production in subacute sclerosing panencephalitis. J Neurovirol 6:121–126

    PubMed  CAS  Google Scholar 

  47. Obojes K, Andres O, Däubener W, Schneider-Schaulies J (2005) Indoleamine 2, 3 dioxygenase (IDO) mediates cell type specific anti-measles virus effects of interferon-gamma. J Virol 79:7768–7776

    PubMed  CAS  Google Scholar 

  48. Mellor AL, Sivakumar J, Chandler P, Smith K, Molina H, Moao D, Munn DH (2001) Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nature Immunol 2:64–68

    CAS  Google Scholar 

  49. Finke D, Brinckmann UG, ter Meulen V, Liebert UG (1995) Gamma interferon is a major mediator of the antiviral defense in experimental measles virus-induced encephalitis. J Virol 69:5469–5474

    PubMed  CAS  Google Scholar 

  50. Patterson CE, Lawrence DMP, Echols LA, Rall GF (2002) Immune-mediated protection from measles virus-induced central nervous system disease is non-cytolytic and gamma interferon dependent. J Virol 76:4497–4506

    PubMed  CAS  Google Scholar 

  51. Saruhan-Direskeneli G, Gurses C, Demirbilek V, Yentur SP, Yilmaz G, Onal E, Yapici Z, Yalcinkaya C, Cokar O, Akman-Demir G, Gokyigit A (2005) Elevated interleukin-12 and CXCL10 in subacute sclerosing panencephalitis. Cytokine 32(2):104–110

    PubMed  CAS  Google Scholar 

  52. Yentur SP, Gurses C, Demirbilek V, Yilmaz G, Onal AE, Yapici Z, Yalcinkaya C, Cokar O, Gokyigit A, Saruhan-Direskeneli G (2005) Alterations in cell-mediated immune response in subacute sclerosing panencephalitis. J Neuroimmunol 170(1–2):179–185

    PubMed  Google Scholar 

  53. Ichiyama T, Siba P, Suarkia D, Reeder J, Takasu T, Miki K, Maeba S, Furukawa S (2006) Analysis of serum and cerebrospinal fluid cytokine levels in subacute sclerosing panencephalitis in Papua New Guinea. Cytokine 33(1):17–20

    PubMed  CAS  Google Scholar 

  54. Aydin OF, Ichiyama T, Anlar B (2009) Serum and cerebrospinal fluid cytokine concentrations in subacute sclerosing panencephalitis. Brain Dev

  55. Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897

    PubMed  CAS  Google Scholar 

  56. Erlenhoefer C, Wurzer WJ, Löffler S, Schneider-Schaulies S, ter Meulen V, Schneider-Schaulies J (2001) CD150 (SLAM) is a receptor for measles virus, but is not involved in viral contact-mediated proliferation inhibition. J Virol 75:4499–4505

    PubMed  CAS  Google Scholar 

  57. Hsu EC, Iorio C, Sarangi F, Khine AA, Richardson CD (2001) CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279:9–21

    PubMed  CAS  Google Scholar 

  58. Dörig RE, Marcil A, Chopra A, Richardson CD (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75(2):295–305

    PubMed  Google Scholar 

  59. Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67(10):6025–6032

    PubMed  CAS  Google Scholar 

  60. Cocks BG, Chang C-CJ, Carballido JM, Yssel H, de Vries JE, Aversa G (1995) A novel receptor involved in T-cell activation. Nature 376:260–263

    PubMed  CAS  Google Scholar 

  61. Minagawa H, Tanaka K, Ono N, Tatsuo H, Yanagi Y (2001) Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82:2913–2917

    PubMed  CAS  Google Scholar 

  62. Ohgimoto S, Ohgimoto K, Niewiesk S, Klagge IM, Pfeuffer J, Johnston ICD, Schneider-Schaulies J, Weidmann A, ter Meulen V, Schneider-Schaulies S (2001) The hemagglutinin protein is an important determinant for measles virus tropism for dendritic cells in vitro and immunosuppression in vivo. J Gen Virol 82:1835–1844

    PubMed  CAS  Google Scholar 

  63. Ogata A, Czub S, Ogata S, Cosby SL, McQuaid S, Budka H, ter Meulen V, Schneider-Schaulies J (1997) Absence of measles virus receptor (CD46) in lesions of subacute sclerosing panencephalitis brains. Acta Neuropathol 94(5):444–449

    PubMed  CAS  Google Scholar 

  64. Takeda M, Tahara M, Hashiguchi T, Sato TA, Jinnouchi F, Ueki S, Ohno S, Yanagi Y (2007) A human lung carcinoma cell line supports efficient measles virus growth and syncytium formation via a SLAM- and CD46-independent mechanism. J Virol 81(21):12091–12096

    PubMed  CAS  Google Scholar 

  65. Leonard VH, Sinn PL, Hodge G, Miest T, Devaux P, Oezguen N, Braun W, McCray PB, McChesney MB, Cattaneo R (2008) Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J Clin Invest 118:2448–2458

    PubMed  CAS  Google Scholar 

  66. Tahara M, Takeda M, Shirogane Y, Hashiguchi T, Ohno S, Yanagi Y (2008) Measles virus infects both polarized epithelial and immune cells by using distinctive receptor-binding sites on its hemagglutinin. J Virol 82(9):4630–4637

    PubMed  CAS  Google Scholar 

  67. Cattaneo R, Schmid A, Billeter MA, Sheppard RD, Udem SA (1988) Multiple viral mutations rather than host factors cause defective measles virus gene expression in a subacute sclerosing panencephalitis cell line. J Virol 62:1388–1397

    PubMed  CAS  Google Scholar 

  68. Baczko K, Liebert UG, Billeter MA, Cattaneo R, Budka H, ter Meulen V (1986) Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis. J Virol 59:472–478

    PubMed  CAS  Google Scholar 

  69. Cattaneo R, Schmid A, Eschle D, Baczko K, ter Meulen V, Billeter MA (1988) Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265

    PubMed  CAS  Google Scholar 

  70. Reuter T, Weissbrich B, Schneider-Schaulies S, Schneider-Schaulies J (2006) RNA interference with measles virus N-, P-, and L-mRNAs efficiently prevents, and with matrix protein-mRNA enhances viral transcription. J Virol 80:5951–5957

    PubMed  CAS  Google Scholar 

  71. Meissner NN, Koschel K (1995) Downregulation of endothelin receptor mRNA synthesis in C6 rat astrocytoma cells by persistent measles virus and canine distemper virus infections. J Virol 69(8):5191–5194

    PubMed  CAS  Google Scholar 

  72. Urbanska EM, Chambers BJ, Ljunggren HG, Norrby E, Kristensson K (1997) Spread of measles virus through axonal pathways into limbic structures in the brain of TAP -/- mice. J Med Virol 52:362–369

    PubMed  CAS  Google Scholar 

  73. Lawrence DMP, Patterson CE, Gales TL, D’Orazio JL, Vaughn MM, Rall GF (2000) Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 74:1908–1918

    PubMed  CAS  Google Scholar 

  74. Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK (1999) Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73:9568–9575

    PubMed  CAS  Google Scholar 

  75. Shingai M, Ayata M, Ishida H, Matsunaga I, Katayama Y, Seya T, Tatsuo H, Yanagi Y, Ogura H (2003) Receptor use by vesicular stomatitis virus pseudotypes with glycoproteins of defective variants of measles virus isolated from brains of patients with subacute sclerosing panencephalitis. J Gen Virol 84(Pt 8):2133–2143

    PubMed  CAS  Google Scholar 

  76. Carsillo T, Carsillo M, Traylor Z, Rajala-Schultz P, Popovich P, Niewiesk S, Oglesbee M (2009) Major histocompatibility complex haplotype determines hsp70-dependent protection against measles virus neurovirulence. J Virol 83(11):5544–5555

    PubMed  CAS  Google Scholar 

  77. Niewiesk S, Brinckmann U, Bankamp B, Sirak S, Liebert UG, ter Meulen V (1993) Susceptibility to measles virus-induced encephalitis in mice correlates with impaired antigen presentation to cytotoxic T lymphocytes. J Virol 67:75–81

    PubMed  CAS  Google Scholar 

  78. Neumeister C, Niewiesk S (1998) Recognition of measles virus-infected cells by CD8+ T cells depends on the H-2 molecule. J Gen Virol 79:2583–2591

    PubMed  CAS  Google Scholar 

  79. Finke D, Liebert UG (1994) CD4+ T cells are essential in overcoming experimental murine measles encephalitis. Immunology 83:184–189

    PubMed  CAS  Google Scholar 

  80. de Vries RD, Yuksel S, Osterhaus AD, de Swart RL (2009) Specific CD8(+) T-lymphocytes control dissemination of measles virus. Eur J Immunol

  81. Weidinger G, Henning G, ter Meulen V, Niewiesk S (2001) Inhibition of major histocompatibility complex class II-dependent antigen presentation by neutralization of gamma interferon leads to breakdown of resistance against measles-induced encephalitis in mice. J Virol 75:3059–3065

    PubMed  CAS  Google Scholar 

  82. Weidinger G, Czub S, Neumeister C, Harriott P, ter Meulen V, Niewiesk S (2000) Role of CD4+ and CD8+ T cells in the prevention of measles virus-induced encephalitis in mice. J Gen Virol 81:2707–2713

    PubMed  CAS  Google Scholar 

  83. Carsillo T, Carsillo M, Niewiesk S, Vasconcelos D, Oglesbee M (2004) Hyperthermic pre-conditioning promotes measles virus clearance from brain in a mouse model of persistent infection. Brain Res 1004:73–82

    PubMed  CAS  Google Scholar 

  84. Cathomen T, Mrkic B, Spehner D, Drillien R, Naef R, Pavlovic J, Aguzzi A, Billeter MA, Cattaneo R (1998) A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17:3899–3908

    PubMed  CAS  Google Scholar 

  85. Ehrengruber M, Ehler E, Billeter M, Naim HY (2002) Measles virus spreads in rat hippocampal neurons by cell-to-cell contact and in a polarized fashion. J Virol 76:5720–5728

    PubMed  CAS  Google Scholar 

  86. Duprex WP, Duffy I, McQuaid S, Hamill L, Schneider-Schaulies J, Cosby L, Billeter M, ter Meulen V, Rima B (1999) The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain. J Virol 73:6916–6922

    PubMed  CAS  Google Scholar 

  87. Ludlow M, Duprex WP, Cosby SL, Allen IV, McQuaid S (2008) Advantages of using recombinant measles viruses expressing a fluorescent reporter gene with vibratome slice technology in experimental measles neuropathogenesis. Neuropathol Appl Neurobiol 34(4):424–434

    PubMed  CAS  Google Scholar 

  88. Moeller K, Duffy I, Duprex P, Rima B, Beschorner R, Fauser S, Meyermann R, Niewiesk S, ter Meulen V, Schneider-Schaulies J (2001) Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H antibody escape from neurovirulence. J Virol 75:7612–7620

    PubMed  CAS  Google Scholar 

  89. Moeller-Ehrlich K, Ludlow M, Beschorner R, Meyermann R, Rima BK, Duprex WP, Niewiesk S, Schneider-Schaulies J (2007) Two functionally linked amino acids in the stem 2 region of measles virus haemagglutinin determine infectivity and virulence in the rodent central nervous system. J Gen Virol 88:3112–3120

    PubMed  CAS  Google Scholar 

  90. Bonami F, Rudd PA, von Messling V (2007) Disease duration determines canine distemper virus neurovirulence. J Virol 81(21):12066–12070

    PubMed  CAS  Google Scholar 

  91. Schubert S, Möller-Ehrlich K, Singethan K, Wiese S, Duprex WP, Rima BK, Niewiesk S, Schneider-Schaulies J (2006) A mouse model of persistent brain infection with recombinant measles virus. J Gen Virol 87:2011–2019

    PubMed  CAS  Google Scholar 

  92. Rall GF, Manchester M, Daniels LR, Callahan EM, Belman AR, Oldstone MB (1997) A transgenic mouse model for measles virus infection of the brain. Proc Natl Acad Sci USA 94(9):4659–4663

    PubMed  CAS  Google Scholar 

  93. Lawrence DM, Vaughn MM, Belman AR, Cole JS, Rall GF (1999) Immune response-mediated protection of adult but not neonatal mice from neuron-restricted measles virus infection and central nervous system disease. J Virol 73(3):1795–1801

    PubMed  CAS  Google Scholar 

  94. Oldstone MBA, Lewicki H, Thomas D, Tishon A, Dales S, Patterson J, Manchester M, Homann D, Naniche D, Holz A (1999) Measles virus infection in a transgenic model: virus-induced immunosuppresion and central nervous system disease. Cell 98:629–640

    PubMed  CAS  Google Scholar 

  95. Evlashev A, Moyse E, Valentin H, Azocar O, Trescol-Biemont M-C, Marie JC, Rabourdin-Combe C, Horvat B (2000) Productive measles virus brain infection and apoptosis in CD46 transgenic mice. J Virol 74:1373–1382

    PubMed  CAS  Google Scholar 

  96. Horvat B, Rivailler P, Varior-Krishnan G, Cardoso A, Gerlier D, Rarourdin-Combe C (1996) Transgenic mice expressing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infections. J Virol 70(10):6673–6681

    PubMed  CAS  Google Scholar 

  97. Niewiesk S, Schneider-Schaulies J, Ohnimus H, Jassoy C, Schneider-Schaulies S, Diamond L, Logan JS, ter Meulen V (1997) CD46 expression does not overcome the intracellular block of measles virus replication in transgenic rats. J Virol 71(10):7969–7973

    PubMed  CAS  Google Scholar 

  98. Mrkic B, Pavlovic J, Rulicke T, Volpe P, Buchholz CJ, Hourcade D, Atkinson JP, Aguzzi A, Cattaneo R (1998) Measles virus spread and pathogenesis in genetically modified mice. J Virol 72(9):7420–7427

    PubMed  CAS  Google Scholar 

  99. Makhortova NR, Askovich P, Patterson CE, Gechman LA, Gerard NP, Rall GF (2007) Neurokinin-1 enables measles virus trans-synaptic spread in neurons. Virology 362(1):235–244

    PubMed  CAS  Google Scholar 

  100. Sellin CI, Davoust N, Guillaume V, Baas D, Belin MF, Buckland R, Wild TF, Horvat B (2006) High pathogenicity of wild-type measles virus infection in CD150 (SLAM) transgenic mice. J Virol 80(13):6420–6429

    PubMed  CAS  Google Scholar 

  101. Sellin CI, Jegou JF, Renneson J, Druelle J, Wild TF, Marie JC, Horvat B (2009) Interplay between virus-specific effector response and Foxp3 regulatory T cells in measles virus immunopathogenesis. PLoS One 4(3):e4948

    PubMed  Google Scholar 

  102. Manchester M, Eto DS, Oldstone MBA (1999) Characterization of the inflammatory response during acute measles encephalitis in NSE-CD46 transgenic mice. J Neuroimmunol 96:207–217

    PubMed  CAS  Google Scholar 

  103. Patterson CE, Daley JK, Echols LA, Lane TE, Rall GF (2003) Measles virus infection induces chemokine synthesis by neurons. J Immunol 171:3102–3109

    PubMed  CAS  Google Scholar 

  104. Tishon A, Lewicki H, Andaya A, McGavern D, Martin L, Oldstone MB (2006) CD4 T cell control primary measles virus infection of the CNS: regulation is dependent on combined activity with either CD8 T cells or with B cells: CD4, CD8 or B cells alone are ineffective. Virology 347(1):234–245

    PubMed  CAS  Google Scholar 

  105. Shingai M, Inoue N, Okuno T, Okabe M, Akazawa T, Miyamoto Y, Ayata M, Honda K, Kurita-Taniguchi M, Matsumoto M, Ogura H, Taniguchi T, Seya T (2005) Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection. J Immunol 175:3252–3261

    PubMed  CAS  Google Scholar 

  106. Welstead GG, Iorio C, Draker R, Bayani J, Squire J, Vonpunsawad S, Cattaneo R, Richardson CD (2005) Measles virus replication in lymphatic cells and organs of CD150 (SLAM) transgenic mice. Proc Natl Acad Sci USA 102:16415–16420

    PubMed  CAS  Google Scholar 

  107. Hahm B, Cho JH, Oldstone MB (2007) Measles virus-dendritic cell interaction via SLAM inhibits innate immunity: selective signaling through TLR4 but not other TLRs mediates suppression of IL-12 synthesis. Virology 358(2):251–257

    PubMed  CAS  Google Scholar 

  108. Johnson KP, Byington DP, Gaddis L (1977) Virological and immunological studies in experimental SSPE. Neurol Neurocir Psiquiatr 18(2–3 Suppl):495–507

    PubMed  CAS  Google Scholar 

  109. Oldstone MBA, Dales S, Tishon A, Lewicki H, Martin L (2005) A role for dual hits in causation of subacute sclerosing panencephalitis. J Exp Med 202:1185–1190

    PubMed  CAS  Google Scholar 

  110. Drillien R, Spehner D, Kirn A, Giraudon P, Buckland R, Wild F, Lecocq J-P (1988) Protection of mice from fatal measles encephalitis by vaccination with vaccinia virus recombinants encoding either the hemagglutinin or the fusion protein. Proc Natl Acad Sci 85:1252–1256

    PubMed  CAS  Google Scholar 

  111. Fournier P, Brons NH, Berbers GA, Wiesmuller KH, Fleckenstein BT, Schneider F, Jung G, Muller CP (1997) Antibodies to a new linear site at the topographical or functional interface between the haemagglutinin and fusion proteins protect against measles encephalitis. J Gen Virol 78:1295–1302

    PubMed  CAS  Google Scholar 

  112. Partidos CD, Ripley J, Delmas A, Obeid OE, Denbury A, Steward MW (1997) Fine specificity of the antibody response to a synthetic peptide from the fusion protein and protection against measles virus-induced encephalitis in a mouse model. J Gen Virol 78:3227–3232

    PubMed  CAS  Google Scholar 

  113. Rammohan KW, McFarland HF, McFarlin DE (1981) Induction of subacute murine measles encephalitis by monoclonal antibody to virus haemagglutinin. Nature 290:588–589

    PubMed  CAS  Google Scholar 

  114. Garg RK (2002) Subacute sclerosing panencephalitis. Postgrad Med J 78(916):63–70

    PubMed  CAS  Google Scholar 

  115. Huffman JH, Sidwell RW, Khare GP, Witkowski JT, Allen LB, Robins RK (1973) In vitro effect of 1-beta-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide (virazole, ICN 1229) on deoxyribonucleic acid and ribonucleic acid viruses. Antimicrob Agents Chemother 3(2):235–241

    PubMed  CAS  Google Scholar 

  116. Honda Y, Hosoya M, Ishii T, Shigeta S, Suzuki H (1994) Effect of ribavirin on subacute sclerosing panencephalitis virus infections in hamsters. Antimicrob Agents Chemother 38(4):653–655

    PubMed  CAS  Google Scholar 

  117. Ishii T, Hosoya M, Mori S, Shigeta S, Suzuki H (1996) Effective ribavirin concentration in hamster brains for antiviral chemotherapy for subacute sclerosing panencephalitis. Antimicrob Agents Chemother 40(1):241–243

    PubMed  CAS  Google Scholar 

  118. Grancher N, Venard V, Kedzierewicz F, Ammerlaan W, Finance C, Muller CP, Le Faou A (2004) Improved antiviral activity in vitro of ribavirin against measles virus after complexation with cyclodextrins. Antiviral Res 62(3):135–137

    PubMed  CAS  Google Scholar 

  119. Jeulin H, Grancher N, Kedzierewicz F, Finance C, Le Faou AE, Venard V (2008) In vivo antiviral activity of ribavirin/alpha-cyclodextrin complex: evaluation on experimental measles virus encephalitis in mice. Int J Pharm 357(1–2):148–153

    PubMed  CAS  Google Scholar 

  120. Jeulin H, Venard V, Carapito D, Finance C, Kedzierewicz F (2009) Effective ribavirin concentration in mice brain using cyclodextrin as a drug carrier: evaluation in a measles encephalitis model. Antiviral Res 81(3):261–266

    PubMed  CAS  Google Scholar 

  121. Statement JWU (1987) Vitamin A for measles. Lancet 1(8541):1067–1068

    Google Scholar 

  122. D’Souza RM, D’Souza R (2002) Vitamin A for preventing secondary infections in children with measles–a systematic review. J Trop Pediatr 48(2):72–77

    PubMed  Google Scholar 

  123. Huiming Y, Chaomin W, Meng M (2005) Vitamin A for treating measles in children. Cochrane Database Syst Rev (4): CD001479

  124. Mora JR, Iwata M, von Andrian UH (2008) Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol

  125. Trottier C, Chabot S, Mann KK, Colombo M, Chatterjee A, Miller WH Jr, Ward BJ (2008) Retinoids inhibit measles virus in vitro via nuclear retinoid receptor signaling pathways. Antiviral Res 80(1):45–53

    PubMed  CAS  Google Scholar 

  126. Trottier C, Colombo M, Mann KK, Miller WH Jr, Ward BJ (2009) Retinoids inhibit measles virus through a type I IFN-dependent bystander effect. Faseb J 23(9):3203–3212

    PubMed  CAS  Google Scholar 

  127. Rodeheffer C, von Messling V, Milot S, Lepine F, Manges AR, Ward BJ (2007) Disease manifestations of canine distemper virus infection in ferrets are modulated by vitamin A status. J Nutr 137(8):1916–1922

    PubMed  CAS  Google Scholar 

  128. Gungor S, Olmez A, Pinar Arikan F, Haliloglu G, Anlar B (2007) Serum retinol and beta-carotene levels in subacute sclerosing panencephalitis. J Child Neurol 22(3):341–343

    PubMed  Google Scholar 

  129. Andersson T, Schultzberg M, Schwarz R, Löve A, Wickman C, Kristensson K (1991) NMDA-receptor antagonist prevents measles virus-induced neurodegeneration. Eur J Neurosci 3:66–71

    PubMed  Google Scholar 

  130. Otaki M, Sada K, Kadoya H, Nagano-Fujii M, Hotta H (2006) Inhibition of measles virus and subacute sclerosing panencephalitis virus by RNA interference. Antiviral Res 70(3):105–111

    PubMed  CAS  Google Scholar 

  131. Keita D, Servan de Almeida R, Libeau G, Albina E (2008) Identification and mapping of a region on the mRNA of Morbillivirus nucleoprotein susceptible to RNA interference. Antiviral Res 80(2):158–167

    PubMed  CAS  Google Scholar 

  132. Suryanarayana K, Baczko K, ter Meulen V, Wagner RR (1994) Transcription inhibition and other properties of matrix proteins expressed by M genes cloned from measles viruses and diseased human brain tissue. J Virol 68:1532–1543

    PubMed  CAS  Google Scholar 

  133. Zinke M, Kendl S, Singethan K, Fehrholz M, Reuter D, Rennick L, Herold MJ, Schneider-Schaulies J (2009) Clearance of measles virus from persistently infected cells by short hairpin RNA. J Virol 83(18):9423–9431

    PubMed  CAS  Google Scholar 

  134. Plemper RK, Erlandson KJ, Lakdawala AS, Sun A, Prussia A, Boonsombat J, Aki-Sener E, Yalcin I, Yildiz I, Temiz-Arpaci O, Tekiner B, Liotta DC, Snyder JP, Compans RW (2004) A target site for template-based design of measles virus entry inhibitors. Proc Natl Acad Sci USA 101(15):5628–5633

    PubMed  CAS  Google Scholar 

  135. Plemper RK, Doyle J, Sun A, Prussia A, Cheng LT, Rota PA, Liotta DC, Snyder JP, Compans RW (2005) Design of a small-molecule entry inhibitor with activity against primary measles virus strains. Antimicrob Agents Chemother 49(9):3755–3761

    PubMed  CAS  Google Scholar 

  136. Sun A, Prussia A, Zhan W, Murray EE, Doyle J, Cheng LT, Yoon JJ, Radchenko EV, Palyulin VA, Compans RW, Liotta DC, Plemper RK, Snyder JP (2006) Nonpeptide inhibitors of measles virus entry. J Med Chem 49(17):5080–5092

    PubMed  CAS  Google Scholar 

  137. Sun A, Chandrakumar N, Yoon JJ, Plemper RK, Snyder JP (2007) Non-nucleoside inhibitors of the measles virus RNA-dependent RNA polymerase complex activity: synthesis and in vitro evaluation. Bioorg Med Chem Lett 17(18):5199–5203

    PubMed  CAS  Google Scholar 

  138. White LK, Yoon JJ, Lee JK, Sun A, Du Y, Fu H, Snyder JP, Plemper RK (2007) Nonnucleoside inhibitor of measles virus RNA-dependent RNA polymerase complex activity. Antimicrob Agents Chemother 51(7):2293–2303

    PubMed  CAS  Google Scholar 

  139. Sun A, Yoon JJ, Yin Y, Prussia A, Yang Y, Min J, Plemper RK, Snyder JP (2008) Potent non-nucleoside inhibitors of the measles virus RNA-dependent RNA polymerase complex. J Med Chem 51(13):3731–3741

    PubMed  CAS  Google Scholar 

  140. Yoon JJ, Krumm SA, Ndungu JM, Hoffman V, Bankamp B, Rota PA, Sun A, Snyder JP, Plemper RK (2009) Target analysis of the experimental measles therapeutic AS-136A. Antimicrob Agents Chemother 53(9):3860–3870

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work of the authors was supported by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schneider-Schaulies.

Additional information

This article is published as part of a Special Issue on Pathogen Variation and Host Response in Infectious Disease.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuter, D., Schneider-Schaulies, J. Measles virus infection of the CNS: human disease, animal models, and approaches to therapy. Med Microbiol Immunol 199, 261–271 (2010). https://doi.org/10.1007/s00430-010-0153-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-010-0153-2

Keywords

Navigation