Skip to main content

Advertisement

Log in

Winter climate, age, and population density affect the timing of conception in female moose (Alces alces)

  • Original Paper
  • Published:
Acta Theriologica Aims and scope Submit manuscript

Abstract

Phenological events such as conception or parturition dates may have profound impact on several key life-history traits of ungulates at the individual as well as the population level. However, relatively little is known about the causes of variation in the timing of reproduction. Based on a 17-year survey of reproductive tracts, we investigated the effect of climate, population density, and age on the conception date of female moose (Alces alces) harvested in Estonia. Ninety-five percent of studied moose cows were conceived within a period of 9 weeks (29 August–30 October), while more than 45 % of all moose cows were conceived from 19 September to 2 October. Conception date was negatively related to population density and nonlinearly to the regional measure of winter climate reflecting the maximal extent of ice on the Baltic Sea (MIE) in the previous winter. High air temperatures during rut (in September) delayed the conception date. The timing of conception also depended on female age. Yearlings conceived significantly later as compared to females of all other age groups. Our findings corroborate the importance of density-dependent as well density-independent processes on the timing of conception of this ungulate. We also propose that the effect of population density on conception date may be mediated by increasing ecological carrying capacity concurrent with increasing population abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berger J (1992) Facilitation of reproductive synchrony by gestation adjustment in gregarious mammals: a new hypothesis. Ecology 73:323–329

    Article  Google Scholar 

  • Bowyer RT, Nicholson MC, Molvar EM, Faro JB (1999) Moose on Kalgin Island: are density-dependent processes related to harvest? Alces 35:73–89

    Google Scholar 

  • Bronson FH (1989) Mammalian reproductive biology. University of Chicago Press, Chicago, p 325

    Google Scholar 

  • Bubenik AB (1998) Behavior. In: Franzmann AW, Schwartz CC (eds) Ecology and management of the North American moose. Smithsonian Institution, Washington, pp 141–171

    Google Scholar 

  • Bunnell FL (1982) The lambing period of mountain sheep: synthesis, hypothesis, and tests. Can J Zool 60:1–14

    Article  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information–theoretic approach. Springer, New York, p 353

    Book  Google Scholar 

  • Clements MN, Clutton-Brock TH, Albon SD, Pemberton JM, Kruuk LE (2011) Gestation length variation in a wild ungulate. Funct Ecol 25:691–703. doi:10.1111/j.1365-2435.2010.01812.x

    Article  Google Scholar 

  • Clutton-Brock TH, Major M, Albon SD, Guinness FE (1987) Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. J Anim Ecol 56:53–67

    Article  Google Scholar 

  • Clutton-Brock TH, Price OF, Albon SD, Jewell PA (1992) Early development and population fluctuations in Soay sheep. J Anim Ecol 61:381–396

    Article  Google Scholar 

  • Clutton-Brock TH, Rose KE, Guiness FE (1997) Density-related changes in sexual selection in red deer. Proc R Soc Lond B 264:1509–1516

    Article  CAS  Google Scholar 

  • Coughenour MB, Singer FJ (1996) Elk population processes in Yellowstone National Park under the policy of natural regulation. Ecol Appl 6:573–583

    Article  Google Scholar 

  • Estes RD (1976) The significance of breeding synchrony in the wildebeest. East Afr Wildl J 14:135–152

    Article  Google Scholar 

  • Feder C, Martin JGA, Festa-Bianchet M, Bérubé C, Jorgenson J (2008) Never too late? Consequences of late birthdate for mass and survival of bighorn lambs. Oecologia 156:773–781. doi:10.1007/s00442-008-1035-9

    Article  PubMed  Google Scholar 

  • Festa-Bianchet M (1988) Birthdate and survival in bighorn lambs (Ovis canadensis). J Zool 214:653–661

    Article  Google Scholar 

  • Festa-Bianchet M, Jorgenson JT, Bérubé CH, Portier C, Wishart WD (1997) Body mass and survival of bighorn sheep. Can J Zool 75:1372–1379

    Article  Google Scholar 

  • Filonov KP (1983) Losj. Lesnaja promyshlennost. Moskva (in Russian)

  • Forchhammer MC, Clutton-Brock TH, Lindström J, Albon SD (2001) Climate and population density induce long-term cohort variation in a northern ungulate. J Anim Ecol 70:721–729. doi:10.1046/j.0021-8790.2001.00532.x

    Article  Google Scholar 

  • Gaillard J-M, Festa-Bianchet M, Yoccoz NG, Loison A, Toigo C (2000) Temporal variation in fitness components and population dynamics of large herbivores. Annu Rev Ecol Syst 31:367–393

    Article  Google Scholar 

  • Garcia AJ, Landete-Castillejos T, Carrion D, Gaspar-Lopez E, Gallego L (2006) Compensatory extension of gestation length with advance of conception in red deer (Cervus elaphus). J Exp Zool 305A:55–61. doi:10.1002/jez.a.244

    Article  Google Scholar 

  • Garel M, Solberg EJ, Sæther B-E, Grøtan V, Tufto J, Heim M (2009) Age, size, and spatiotemporal variation in ovulation patterns of a seasonal breeder, the Norwegian moose (Alces alces). Am Nat 173:89–104. doi:10.1086/593359

    Article  PubMed  Google Scholar 

  • Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001) Soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56:135–150. doi:10.1023/A:1013039830323

    Article  CAS  Google Scholar 

  • Hjeljord O, Histol T (1999) Range-body mass of a northern ungulate—a test of hypothesis. Oecologia 119:326–339

    Article  Google Scholar 

  • Hogg JT, Hass CC, Jenni DA (1992) Sex-biased maternal expenditure in Rocky Mountain bighorn sheep. Behav Ecol Sociobiol 31:243–251

    Article  Google Scholar 

  • Holand Ø, Mysterud A, Røed KH, Coulson T, Gjøstein H, Weladji RB, Nieminen M (2006) Adaptive adjustment of offspring sex ratio and maternal reproductive effort in an iteroparous mammal. Proc R Soc Lond B 273:293–299. doi:10.1098/rspb.2005.3330

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  PubMed  CAS  Google Scholar 

  • Jaagus J (1999) Interactions between snow cover duration, extent of sea ice and winter mean air temperature in Estonia. Publ Inst Geogr Univ Tartu 84:74–83

    Google Scholar 

  • Knorre EP, Subin GG (1959) Opredelenie vozrasta losja. - Trudy Pećhoro-Ilyćskogo gosudarstvennogo zapovednika. Syktyvkar 7:123–132 (in Russian)

  • Kurnosov KM (1973) Nekotoroje dannoje po embriogenezu losja. V kn.: Odomashnivanie losja. Moskva, 58–62 (in Russian)

  • Langvatn R, Mysterud A, Stenseth NC, Yoccoz NG (2004) Timing and synchrony of ovulation in red deer constrained by short northern summers. Am Nat 163:763–772

    Article  PubMed  Google Scholar 

  • Lent PC (1974) A review of rutting behavior in moose. In: Bedard J (ed) Proceedings of the International Symposium on moose ecology held in Quebec City, Canada, 27–28 March 1973. Nat Can 101:307–323

  • Loison A, Langvatn R (1998) Short- and long-term effects of winter and spring weather on growth and survival of red deer in Norway. Oecologia 116:489–500

    Article  Google Scholar 

  • Markgren G (1969) Reproduction of moose in Sweden. Viltrevy 6:127–299

    Google Scholar 

  • Matsuura Y, Sato K, Suzuki M, Ohtaishi N (2004) The effects of age, body weight and reproductive status on conception dates and gestation periods in captive sika deer. Mammal Study 29:15–20

    Article  Google Scholar 

  • Matveyev AS, Bakunin VA (1994) Game animals and birds of the Chelyabinsk region. Cheljabinsk, p 384

  • Milner JM, Elston DA, Albon SD (1999) Estimating the contributions of population density and climatic fluctuations to interannual variation in survival of Soay sheep. J Anim Ecol 68:1235–1247

    Article  Google Scholar 

  • Moyes K, Nussey DH, Clements MN, Guinness FE, Morris A, Morris S, Pemberton JM, Kruuk LEB, Clutton-Brock TH (2011) Advancing breeding phenology in response to environmental change in a wild red deer population. Glob Chang Biol 17:2455–2469. doi:10.1111/j.1365-2486.2010.02382.x

    Article  Google Scholar 

  • Mysterud A, Stenseth NC, Yoccoz NG, Ottersen G, Langvatn R (2003) The response of terrestrial ecosystems to climate variability associated with the North Atlantic Oscillation. In: Hurrell JW, et al (eds) The North Atlantic Oscillation. Climatic significance and environmental impact. Geophys Monogr 134:235–262. doi:10.1029/134GM11

  • Mysterud A, Roed KH, Holand O, Yoccoz NG, Nieminen M (2009) Age-related gestation length adjustment in a large iteroparous mammal at northern latitude. J Anim Ecol 78:1002–1006. doi:10.1111/j.1365-2656.2009.01553.x

    Article  PubMed  Google Scholar 

  • Pettorelli N, Mysterud A, Yoccoz NG, Langvatn R, Stenseth NC (2005) Importance of climatological downscaling and plant phenology for red deer in heterogenous landscapes. Proc R Soc Lond B 272:2357–2364. doi:10.1098/rspb.2005.3218

    Article  Google Scholar 

  • Post E, Stenseth NC (1999) Climatic variability, plant phenology, and northern ungulates. Ecology 80:1322–1339

    Article  Google Scholar 

  • Post E, Stenseth NC, Langvatn R, Fromentin JM (1997) Global climate change and phenotypic variation among red deer cohorts. Proc R Soc Lond B 264:1317–1324

    Article  CAS  Google Scholar 

  • Rachlow JL, Bowyer RT (1991) Interannual variation in timing and synchrony of parturition in Dall's sheep. J Mammal 72:487–492

    Article  Google Scholar 

  • Renecker LA, Hudson RJ (1986) Seasonal energy expenditures and thermoregulatory responses of moose. Can J Zool 64:322–327

    Article  Google Scholar 

  • Robertson A, Hiraiwa-Hasegawa M, Albon SD, Clutton-Brock TH (1992) Early growth and suckling behaviour of Soay sheep in a fluctuating population. J Zool 227:661–671

    Article  Google Scholar 

  • Sæther B-E, Gravem AJ (1988) Annual variation in winter body condition of Norwegian moose calves. J Wildl Manag 52:333–336

    Article  Google Scholar 

  • Sæther B-E, Heim M (1993) Ecological correlates of individual variation in age at maturity in female moose (Alces alces): the effects of environmental variability. J Anim Ecol 62:482–489

    Article  Google Scholar 

  • Sand H (1996) Life history patterns in female moose (Alces alces): the relationship between age, body size, fecundity and environmental conditions. Oecologia 106:212–220

    Article  Google Scholar 

  • Schwartz CC (1998) Reproduction, natality and growth. In: Franzmann AW, Schwartz CC (eds) Ecology and management of the North American moose. Smithsonian Institution, Washington, pp 141–171

    Google Scholar 

  • Schwartz CC, Hundertmark KJ, Spraker TH (1992) An evaluation of selective bull moose harvest on the Kenai peninsula, Alaska. Alces 28:1–13

    Google Scholar 

  • Seinä A, Palosuo E (1993) Itämeren suurimpien vuotuisten jääpeitteen laajuuksien luokittelu 1720–1992. (In Finnish with an English summary: The classification of maximum annual extent of ice cover in the Baltic Sea, 1720–1992.) Finnish Institute of Marine Research, Helsinki, MERI No. 20

  • Sigouin D, Ouellet JP, Courtois R (1995) Moose (Alces alces) rutting period variations. Alces 31:185–197

    Google Scholar 

  • Stewart KM, Bowyer RT, Dick BL, Johnson BK, Kie JG (2005) Density-dependent effects on physical condition and reproduction in North American elk: an experimental test. Oecologia 143:85–93

    Article  PubMed  Google Scholar 

  • Timofejeva (1974) Losj (Ekologia, rasprostranenije, hozjaistvennoje znachenije). Izdatjelstvo Leningradskogo Universiteta, Leningrad, Russia. (In Russian)

  • Tooming H (2003) Talve ja kevade seosed Eesti kliimas. (In Estonian with an English summary: Winter–spring relationships in Estonian climate). Publ Inst Geogr Univ Tartu 93:129–142

    Google Scholar 

  • Veeroja R, Tilgar V, Kirk A, Tõnisson J (2008) Climatic effects on life-history traits of moose in Estonia. Oecologia 154:703–713. doi:10.1007/s00442-007-0873-1

    Article  PubMed  Google Scholar 

  • Veeroja R, Kirk A, Tilgar V, Säde S, Kreitsberg M, Tõnisson J (2010) Conception date affects litter type and foetal sex ratio in female moose in Estonia. J Anim Ecol 79:169–175. doi:10.1111/j.1365-2656.2009.01599.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jaak Jaagus, Margo Tannik, Tanel Türna, Merit Kreitsberg, Leeni Seppel, Raivo Mänd, Tiit Randveer, and Peep Männil for their help and support. We also thank two anonymous referees for ideas, comments, and suggestions on previous draft of this work. Financial support for this study was provided by the Estonian Environmental Investment Centre, the Estonian Science Foundation (grant number 8376 to V.T.), the Estonian Ministry of Education and Science (target-financing project number 0180004s09), and the European Union through the European Regional Development Fund (Center of Excellence FIBIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rauno Veeroja.

Additional information

Communicated by: Kris Hundertmark

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veeroja, R., Kirk, A., Tilgar, V. et al. Winter climate, age, and population density affect the timing of conception in female moose (Alces alces). Acta Theriol 58, 349–357 (2013). https://doi.org/10.1007/s13364-012-0106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-012-0106-9

Keywords

Navigation