Skip to main content
Log in

Peptide Dimethylation: Fragmentation Control via Distancing the Dimethylamino Group

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Direct reductive methylation of peptides is a common method for quantitative proteomics. It is an active derivatization technique; with participation of the dimethylamino group, the derivatized peptides preferentially release intense a1 ions. The advantageous generation of a1 ions for quantitative proteomic profiling, however, is not desirable for targeted proteomic quantitation using multiple reaction monitoring mass spectrometry; this mass spectrometric method prefers the derivatizing group to stay with the intact peptide ions and multiple fragments as passive mass tags. This work investigated collisional fragmentation of peptides whose amine groups were derivatized with five linear ω-dimethylamino acids, from 2-(dimethylamino)-acetic acid to 6-(dimethylamino)-hexanoic acid. Tandem mass spectra of the derivatized tryptic peptides revealed different preferential breakdown pathways. Together with energy resolved mass spectrometry, it was found that shutting down the active participation of the terminal dimethylamino group in fragmentation of derivatized peptides is possible. However, it took a separation of five methylene groups between the terminal dimethylamino group and the amide formed upon peptide derivatization. For the first time, the gas-phase fragmentation of peptides derivatized with linear ω-dimethylamino acids of systematically increasing alkyl chain lengths is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Figure 1
Figure 2
Scheme 5
Scheme 6
Figure 3
Figure 4
Figure 5
Scheme 7
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yao, X.: Derivatization or not: a choice in quantitative proteomics. Anal. Chem. 83, 4427–4439 (2011)

    Article  CAS  Google Scholar 

  2. Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., Pappin, D.J.: Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004)

    Article  CAS  Google Scholar 

  3. Shi, Y., Bajrami, B., Yao, X.: Passive and active fragment ion mass defect labeling: distinct proteomics potential of iodine-based reagents. Anal. Chem. 81, 6438–6448 (2009)

    Article  CAS  Google Scholar 

  4. Ow, S.Y., Salim, M., Noirel, J., Evans, C., Rehman, I., Wright, P.C.: iTRAQ underestimation in simple and complex mixtures: “the good, the bad, and the ugly”. J. Proteome Res. 8, 5347–5355 (2009)

    Article  CAS  Google Scholar 

  5. Karp, N.A., Huber, W., Sadowski, P.G., Charles, P.D., Hester, S.V., Lilley, K.S.: Addressing accuracy and precision issues in iTRAQ quantitation. Mol. Cell. Proteomics 9, 1885–1897 (2010)

    Article  CAS  Google Scholar 

  6. Hsu, J.L., Huang, S.Y., Chow, N.H., Chen, S.H.: Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843–6852 (2003)

    Article  CAS  Google Scholar 

  7. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S., Heck, A.J.: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009)

    Article  CAS  Google Scholar 

  8. Wu, Y., Wang, F., Liu, Z., Qin, H., Song, C., Huang, J., Bian, Y., Wei, X., Dong, J., Zou, H.: Five-plex isotope dimethyl labeling for quantitative proteomics. Chem. Commun. (Camb.) 50, 1708–1710 (2014)

    Article  CAS  Google Scholar 

  9. Koehler, C.J., Arntzen, M.O., de Souza, G.A., Thiede, B.: An approach for triplex-isobaric peptide termini labeling (Triplex-IPTL). Anal. Chem. 85, 2478–2485 (2013)

    Article  CAS  Google Scholar 

  10. Bamberger, C., Pankow, S., Park, S.K., Yates, J.R.: Interference-free proteome quantification with MS/MS-based isobaric isotopologue detection. J. Proteome Res. 13, 1494–1501 (2014)

    Article  CAS  Google Scholar 

  11. Zhou, Y., Shan, Y., Wu, Q., Zhang, S., Zhang, L., Zhang, Y.: Mass defect-based pseudo-isobaric dimethyl labeling for proteome quantification. Anal. Chem. 85, 10658–10663 (2013)

    Article  CAS  Google Scholar 

  12. Kovanich, D., Cappadona, S., Raijmakers, R., Mohammed, S., Scholten, A., Heck, A.J.: Applications of stable isotope dimethyl labeling in quantitative proteomics. Anal. Bioanal. Chem. 404, 991–1009 (2012)

    Article  CAS  Google Scholar 

  13. Hsu, J.L., Huang, S.Y., Shiea, J.T., Huang, W.Y., Chen, S.H.: Beyond quantitative proteomics: signal enhancement of the A1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 4, 101–108 (2005)

    Article  CAS  Google Scholar 

  14. Fu, Q., Li, L.: De novo sequencing of neuropeptides using reductive isotopic methylation and investigation of ESI QTOF MS/MS fragmentation pattern of neuropeptides with N-terminal dimethylation. Anal. Chem. 77, 7783–7795 (2005)

    Article  CAS  Google Scholar 

  15. Locke, S.J., Leslie, A.D., Melanson, J.E., Pinto, D.M.: Deviation from the mobile proton model in amino-modified peptides: implications for multiple reaction monitoring analysis of peptides. Rapid Commun. Mass Spectrom. 20, 1525–1530 (2006)

    Article  CAS  Google Scholar 

  16. Rose, C.M., Merrill, A.E., Bailey, D.J., Hebert, A.S., Westphall, M.S., Coon, J.J.: Neutron encoded labeling for peptide identification. Anal. Chem. 85, 5129–5137 (2013)

    Article  CAS  Google Scholar 

  17. McAlister, G.C., Huttlin, E.L., Haas, W., Ting, L., Jedrychowski, M.P., Rogers, J.C., Kuhn, K., Pike, I., Grothe, R.A., Blethrow, J.D., Gygi, S.P.: Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal. Chem. 84, 7469–7478 (2012)

    Article  CAS  Google Scholar 

  18. Werner, T., Becher, I., Sweetman, G., Doce, C., Savitski, M.M., Bantscheff, M.: High-resolution enabled TMT 8-plexing. Anal. Chem. 84, 7188–7194 (2012)

    Article  CAS  Google Scholar 

  19. Hebert, A.S., Merrill, A.E., Stefely, J.A., Bailey, D.J., Wenger, C.D., Westphall, M.S., Pagliarini, D.J., Coon, J.: Amine-reactive neutron-encoded labels for highly plexed proteomic quantitation. Mol. Cell. Proteomics 12, 3360–3369 (2013)

    Article  CAS  Google Scholar 

  20. Abbatiello, S.E., Mani, D.R., Schilling, B., Maclean, B., Zimmerman, L.J., Feng, X., Cusack, M.P., Sedransk, N., Hall, S.C., Addona, T., Allen, S., Dodder, N.G., Ghosh, M., Held, J.M., Hedrick, V., Inerowicz, H.D., Jackson, A., Keshishian, H., Kim, J.W., Lyssand, J.S., Riley, C.P., Rudnick, P., Sadowski, P., Shaddox, K., Smith, D., Tomazela, D., Wahlander, A., Waldemarson, S., Whitwell, C.A., You, J., Zhang, S., Kinsinger, C.R., Mesri, M., Rodriguez, H., Borchers, C.H., Buck, C., Fisher, S.J., Gibson, B.W., Liebler, D., Maccoss, M., Neubert, T.A., Paulovich, A., Regnier, F., Skates, S.J., Tempst, P., Wang, M., Carr, S.A.: Design, implementation, and multisite evaluation of a system suitability protocol for the quantitative assessment of instrument performance in liquid chromatography-multiple reaction monitoring-MS (LC-MRM-MS). Mol. Cell. Proteomics 12, 2623–2639 (2013)

    Article  CAS  Google Scholar 

  21. DeSouza, L.V., Taylor, A.M., Li, W., Minkoff, M.S., Romaschin, A.D., Colgan, T.J., Siu, K.W.: Multiple reaction monitoring of mTRAQ-labeled peptides enables absolute quantification of endogenous levels of a potential cancer marker in cancerous and normal endometrial tissues. J. Proteome Res. 7, 3525–3534 (2008)

    Article  CAS  Google Scholar 

  22. DeSouza, L.V., Krakovska, O., Darfler, M.M., Krizman, D.B., Romaschin, A.D., Colgan, T.J., Siu, K.W.: mTRAQ-based quantification of potential endometrial carcinoma biomarkers from archived formalin-fixed paraffin-embedded tissues. Proteomics 10, 3108–3116 (2010)

    Article  CAS  Google Scholar 

  23. Oppermann, F.S., Klammer, M., Bobe, C., Cox, J., Schaab, C., Tebbe, A., Daub, H.: Comparison of SILAC and mTRAQ quantification for phosphoproteomics on a quadrupole orbitrap mass spectrometer. J. Proteome Res. 12, 4089–4100 (2013)

    Article  CAS  Google Scholar 

  24. Gropengiesser, J., Varadarajan, B.T., Stephanowitz, H., Krause, E.: The relative influence of phosphorylation and methylation on responsiveness of peptides to MALDI and ESI mass spectrometry. J. Mass Spectrom. 44, 821–831 (2009)

    Article  CAS  Google Scholar 

  25. Maclean, B., Tomazela, D.M., Abbatiello, S.E., Zhang, S., Whiteaker, J.R., Paulovich, A.G., Carr, S.A., Maccoss, M.J.: Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry. Anal. Chem. 82, 10116–10124 (2010)

    Article  CAS  Google Scholar 

  26. Eschweiler, W.: Replacement of hydrogen atoms by the methyl group by formaldehyde, bound at nitrogen. BER 38, 880–882 (1905)

    Article  Google Scholar 

  27. Clarke, H.T., Gillespie, H.B., Weisshaus, S.Z.: Action of formaldehyde on amines and amino acids. J. Am. Chem. Soc. 55, 4571–4587 (1933)

    Article  CAS  Google Scholar 

  28. Harrison, A.G.: To B or not to B: the ongoing saga of peptide B ions. Mass Spectrom. Rev. 28, 640–654 (2009)

    Article  CAS  Google Scholar 

  29. Harrison, A.G., Csizmadia, I.G., Tang, T.H., Tu, Y.P.: Reaction competition in the fragmentation of protonated dipeptides. J. Mass Spectrom. 35, 683–688 (2000)

    Article  CAS  Google Scholar 

  30. McLafferty, F.W.: Mass spectrometric analysis: molecular rearrangements. Anal. Chem. 31, 82–87 (1959)

    Article  CAS  Google Scholar 

  31. Csonka, I.P., Paizs, B., Lendvay, G., Suhai, S.: Proton mobility and main fragmentation pathways of protonated lysylglycine. Rapid Commun. Mass Spectrom. 15, 1457–1472 (2001)

    Article  CAS  Google Scholar 

  32. He, Y., Reilly, J.P.: Does a charge tag really provide a fixed charge? Angew. Chem. Int. Ed. Engl. 47, 2463–2465 (2008)

    Article  CAS  Google Scholar 

  33. Yalcin, T., Harrison, A.G.: Ion chemistry of protonated lysine derivatives. J. Mass Spectrom. 31, 1237–1243 (1996)

    Article  CAS  Google Scholar 

  34. Farrugia, J.M., Taverner, T., O’Hair, R.A.J.: Side-chain involvement in the fragmentation reactions of the protonated methyl esters of histidine and its peptides. Int. J. Mass Spectrom. 209, 99–112 (2001)

    Article  CAS  Google Scholar 

  35. Tsaprailis, G., Nair, H., Zhong, W., Kuppannan, K., Futrell, J.H., Wysocki, V.H.: A mechanistic investigation of the enhanced cleavage at histidine in the gas-phase dissociation of protonated peptides. Anal. Chem. 76, 2083–2094 (2004)

    Article  CAS  Google Scholar 

  36. Hiserodt, R.D., Brown, S.M., Swijter, D.F., Hawkins, N., Mussinan, C.J.: A study of b1 + H2O and b1-ions in the product ion spectra of dipeptides containing n-terminal basic amino acid residues. J. Am. Soc. Mass Spectrom. 18, 1414–1422 (2007)

    Article  CAS  Google Scholar 

  37. van der Rest, G., He, F., Emmett, M.R., Marshall, A.G., Gaskell, S.J.: Gas-phase cleavage of PTC-derivatized electrosprayed tryptic peptides in an FT-ICR trapped-ion cell: mass-based protein identification without liquid chromatographic separation. J. Am. Soc. Mass Spectrom. 12, 288–295 (2001)

    Article  Google Scholar 

  38. Diego, P.A., Bajrami, B., Jiang, H., Shi, Y., Gascon, J.A., Yao, X.: Site-preferential dissociation of peptides with active chemical modification for improving fragment ion detection. Anal. Chem. 82, 23–27 (2010)

    Article  CAS  Google Scholar 

  39. Laskin, J., Yang, Z., Song, T., Lam, C., Chu, I.K.: Effect of the basic residue on the energetics, dynamics, and mechanisms of gas-phase fragmentation of protonated peptides. J. Am. Chem. Soc. 132, 16006–16016 (2010)

    Article  CAS  Google Scholar 

  40. Barlow, C.K., O’Hair, R.A.J.: Gas-phase peptide fragmentation: how understanding the fundamentals provides a springboard to developing new chemistry and novel proteomic tools. J. Mass Spectrom. 43, 1301–1319 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate financial support from the Cystic Fibrosis Foundation (YAO07XX0) and the NCI/NIH (1R21CA155536-01). They thank Song Li for his assistance with NMR spectroscopy and the Leadbeater Lab for use of their scientific microwave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McShane, A.J., Shen, Y., Castillo, M.J. et al. Peptide Dimethylation: Fragmentation Control via Distancing the Dimethylamino Group. J. Am. Soc. Mass Spectrom. 25, 1694–1704 (2014). https://doi.org/10.1007/s13361-014-0951-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0951-7

Key words

Navigation