Skip to main content

Advertisement

Log in

Applications of stable isotope dimethyl labeling in quantitative proteomics

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mass spectrometry has proven to be an indispensable tool for protein identification, characterization, and quantification. Among the possible methods in quantitative proteomics, stable isotope labeling by using reductive dimethylation has emerged as a cost-effective, simple, but powerful method able to compete at any level with the present alternatives. In this review, we briefly introduce experimental and software methods for proteome analysis using dimethyl labeling and provide a comprehensive overview of reported applications in the analysis of (1) differential protein expression, (2) posttranslational modifications, and (3) protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  CAS  Google Scholar 

  2. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80(1):273–299

    Article  CAS  Google Scholar 

  3. Mallick P, Kuster B (2010) Proteomics: a pragmatic perspective. Nat Biotechnol 28(7):695–709

    Article  CAS  Google Scholar 

  4. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031

    Article  CAS  Google Scholar 

  5. Julka S, Regnier F (2004) Quantification in proteomics through stable isotope coding: a review. J Proteome Res 3(3):350–363

    Article  CAS  Google Scholar 

  6. Heck AJR, Krijgsveld J (2004) Mass spectrometry-based quantitative proteomics. Expert Rev Proteomics 1(3):317–326

    Article  CAS  Google Scholar 

  7. Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  Google Scholar 

  8. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7(12):952–958

    Article  CAS  Google Scholar 

  9. Gouw JW, Krijgsveld J, Heck AJR (2010) Quantitative proteomics by metabolic labeling of model organisms. Mol Cell Proteomics 9(1):11–24

    Article  CAS  Google Scholar 

  10. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  Google Scholar 

  11. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  CAS  Google Scholar 

  12. Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  Google Scholar 

  13. Boersema PJ, Aye TT, van Veen TAB, Heck AJR, Mohammed S (2008) Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8(22):4624–4632

    Article  CAS  Google Scholar 

  14. Jentoft N, Dearborn DG (1979) Labeling of proteins by reductive methylation using sodium cyanoborohydride. J Biol Chem 254(11):4359–4365

    CAS  Google Scholar 

  15. Hsu J-L, Huang S-Y, Chow N-H, Chen S-H (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75(24):6843–6852

    Article  CAS  Google Scholar 

  16. Hsu J-L, Huang S-Y, Shiea J-T, Huang W-Y, Chen S-H (2005) Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J Proteome Res 4(1):101–108

    Article  CAS  Google Scholar 

  17. Ji C, Guo N, Li L (2005) Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. J Proteome Res 4(6):2099–2108

    Article  CAS  Google Scholar 

  18. Hsu J-L, Huang S-Y, Chen S-H (2006) Dimethyl multiplexed labeling combined with microcolumn separation and MS analysis for time course study in proteomics. Electrophoresis 27(18):3652–3660

    Article  CAS  Google Scholar 

  19. Cappadona S, Muñoz J, Spee WPE, Low TY, Mohammed S, van Breukelen B, Heck AJR (2011) Deconvolution of overlapping isotopic clusters improves quantification of stable isotope–labeled peptides. J Proteomics 74(10):2204–2209

    Article  CAS  Google Scholar 

  20. Guo K, Ji C, Li L (2007) Stable-isotope dimethylation labeling combined with LC−ESI MS for quantification of amine-containing metabolites in biological samples. Anal Chem 79(22):8631–8638

    Article  CAS  Google Scholar 

  21. Di Palma S, Raijmakers R, Heck AJR, Mohammed S (2011) Evaluation of the deuterium isotope effect in zwitterionic hydrophilic interaction liquid chromatography separations for implementation in a quantitative proteomic approach. Anal Chem 83(21):8352–8356

    Article  CAS  Google Scholar 

  22. Ji CJ, Li LJ, Gebre M, Pasdar M, Li L (2005) Identification and quantification of differentially expressed proteins in E-cadherin deficient SCC9 cells and SCC9 transfectants expressing E-cadherin by dimethyl isotope labeling, LC-MALDI MS and MS/MS. J Proteome Res 4(4):1419–1426

    Article  CAS  Google Scholar 

  23. Ji C, Li L (2005) Quantitative proteome analysis using differential stable isotopic labeling and microbore LC−MALDI MS and MS/MS. J Proteome Res 4(3):734–742

    Article  CAS  Google Scholar 

  24. Huang SY, Tsai ML, Wu CJ, Hsu JL, Ho SH, Chen SH (2006) Quantitation of protein phosphorylation in pregnant rat uteri using stable isotope dimethyl labeling coupled with IMAC. Proteomics 6(6):1722–1734

    Article  CAS  Google Scholar 

  25. Zhou H, Low TY, Hennrich ML, van der Toorn H, Schwend T, Zou H, Mohammed S, Heck AJR (2011) Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Mol Cell Proteomics. doi:10.1074/mcp.M110.006452

  26. Lemeer S, Jopling C, Gouw J, Mohammed S, Heck AJR, Slijper M, den Hertog J (2008) Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. Mol Cell Proteomics 7(11):2176–2187

    Article  CAS  Google Scholar 

  27. Boersema PJ, Foong LY, Ding VMY, Lemeer S, van Breukelen B, Philp R, Boekhorst J, Snel B, den Hertog J, Choo ABH, Heck AJR (2010) In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol Cell Proteomics 9(1):84–99

    Article  CAS  Google Scholar 

  28. Raijmakers R, Berkers CR, de Jong A, Ovaa H, Heck AJR, Mohammed S (2008) Automated online sequential isotope labeling for protein quantitation applied to proteasome tissue-specific diversity. Mol Cell Proteomics 7(9):1755–1762

    Article  CAS  Google Scholar 

  29. Raijmakers R, Heck AJR, Mohammed S (2009) Assessing biological variation and protein processing in primary human leukocytes by automated multiplex stable isotope labeling coupled to 2 dimensional peptide separation. Mol Biosyst 5(9):992–1003

    Article  CAS  Google Scholar 

  30. Wang F, Chen R, Zhu J, Sun D, Song C, Wu Y, Ye M, Wang L, Zou H (2010) A fully automated system with online sample loading, isotope dimethyl labeling and multidimensional separation for high-throughput quantitative proteome analysis. Anal Chem 82(7):3007–3015

    Article  CAS  Google Scholar 

  31. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJR (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4(4):484–494

    Article  CAS  Google Scholar 

  32. Hsu J-L, Chen S-H, Li D-T, Shi F-K (2007) Enhanced a1 fragmentation for dimethylated proteins and its applications for N-terminal identification and comparative protein quantitation. J Proteome Res 6(6):2376–2383

    Article  CAS  Google Scholar 

  33. Shen P-T, Hsu J-L, Chen S-H (2007) Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using LC−MS/MS. Anal Chem 79(24):9520–9530

    Article  CAS  Google Scholar 

  34. Taouatas N, Heck AJR, Mohammed S (2010) Evaluation of metalloendopeptidase Lys-N protease performance under different sample handling conditions. J Proteome Res 9(8):4282–4288

    Article  CAS  Google Scholar 

  35. Hennrich M, Mohammed S, Altelaar A, Heck A (2010) Dimethyl isotope labeling assisted de novo peptide sequencing. J Am Soc Mass Spectrom 21(12):1957–1965

    Article  CAS  Google Scholar 

  36. Kovanich D, Aye TT, Heck AJR, Scholten A (2012) Probing the specificity of protein–protein interactions by quantitative chemical proteomics in: chemical proteomics. Methods Mol Biol 803:167–181

    Article  Google Scholar 

  37. Cappadona S, Baker P, Cutillas P, Heck A, van Breukelen B (2012) Amino Acids (in press)

  38. Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA, Burlingame AL (2003) Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol Cell Proteomics 2(5):299–314

    CAS  Google Scholar 

  39. Chalkley RJ, Baker PR, Huang L, Hansen KC, Allen NP, Rexach M, Burlingame AL (2005) Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer. Mol Cell Proteomics 4(8):1194–1204

    Article  CAS  Google Scholar 

  40. Ji C, Zhang N, Damaraju S, Damaraju VL, Carpenter P, Cass CE, Li L (2007) A study of reproducibility of guanidination–dimethylation labeling and liquid chromatography matrix-assisted laser desorption ionization mass spectrometry for relative proteome quantification. Anal Chim Acta 585(2):219–226

    Article  CAS  Google Scholar 

  41. Mortensen P, Gouw JW, Olsen JV, Ong S-E, Rigbolt KTG, Bunkenborg J, Cox J, Foster LJ, Heck AJR, Blagoev B, Andersen JS, Mann M (2009) MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 9(1):393–403

    Article  CAS  Google Scholar 

  42. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  Google Scholar 

  43. Khan Z, Bloom JS, Garcia BA, Singh M, Kruglyak L (2009) Protein quantification across hundreds of experimental conditions. Proc Natl Acad Sci USA 106(37):15544–15548

    Article  CAS  Google Scholar 

  44. Han DK, Eng J, Zhou H, Aebersold R (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19(10):946–951

    Article  CAS  Google Scholar 

  45. Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N, Sun Z, Nilsson E, Pratt B, Prazen B, Eng JK, Martin DB, Nesvizhskii AI, Aebersold R (2010) A guided tour of the trans-proteomic pipeline. Proteomics 10(6):1150–1159

    Article  CAS  Google Scholar 

  46. Colaert N, Vandekerckhove J, Martens L, Gevaert K (2011) A case study on the comparison of different software tools for automated quantification of peptide. in: gel free proteomics: methods and protocols, vol 753. Humana, Totowa, pp 373–398

    Google Scholar 

  47. van Breukelen B, van den Toorn HWP, Drugan MM, Heck AJR (2009) StatQuant: a post-quantification analysis toolbox for improving quantitative mass spectrometry. Bioinformatics 25(11):1472–1473

    Article  CAS  Google Scholar 

  48. Munoz J, Low TY, Kok YJ, Chin A, Frese CK, Ding V, Choo A, Heck AJR (2011) The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells. Mol Syst Biol 7:550

    Article  CAS  Google Scholar 

  49. Phanstiel DH, Brumbaugh J, Wenger CD, Tian S, Probasco MD, Bailey DJ, Swaney DL, Tervo MA, Bolin JM, Ruotti V, Stewart R, Thomson JA, Coon JJ (2011) Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat Methods 8(10):821–827

    Article  CAS  Google Scholar 

  50. Parker R, Melathopoulos AP, White R, Pernal SF, Guarna MM, Foster LJ (2010) Ecological adaptation of diverse honey bee (Apis mellifera) populations. PLoS One 5(6):e11096

    Article  CAS  Google Scholar 

  51. Grimsrud PA, Swaney DL, Wenger CD, Beauchene NA, Coon JJ (2010) Phosphoproteomics for the masses. ACS Chem Biol 5(1):105–119

    Article  CAS  Google Scholar 

  52. Lemeer S, Heck AJR (2009) The phosphoproteomics data explosion. Curr Opin Chem Biol 13(4):414–420

    Article  CAS  Google Scholar 

  53. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49(1):199–221

    Article  CAS  Google Scholar 

  54. Leitner A, Sturm M, Lindner W (2011) Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: a review. Anal Chim Acta 703(1):19–30

    Article  CAS  Google Scholar 

  55. Zoumaro-Djayoon AD, Ding V, Foong L-Y, Choo A, Heck AJR, Muñoz J (2011) Investigating the role of FGF-2 in stem cell maintenance by global phosphoproteomics profiling. Proteomics 11(20):3962–3971

    Article  CAS  Google Scholar 

  56. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  57. Ding VMY, Boersema PJ, Foong LY, Preisinger C, Koh G, Natarajan S, Lee D-Y, Boekhorst J, Snel B, Lemeer S, Heck AJR, Choo A (2011) Tyrosine phosphorylation profiling in FGF-2 stimulated human embryonic stem cells. PLoS One 6(3):e17538

    Article  CAS  Google Scholar 

  58. Wolf-Yadlin A, Hautaniemi S, Lauffenburger DA, White FM (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc Natl Acad Sci USA 104(14):5860–5865

    Article  CAS  Google Scholar 

  59. Kaji H, Yamauchi Y, Takahashi N, Isobe T (2007) Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat Protoc 1(6):3019–3027

    Article  CAS  Google Scholar 

  60. Zhang H, Li X-j, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21(6):660–666

    Article  CAS  Google Scholar 

  61. Hägglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3(3):556–566

    Article  CAS  Google Scholar 

  62. Larsen MR, Jensen SS, Jakobsen LA, Heegaard NHH (2007) Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 6(10):1778–1787

    Article  CAS  Google Scholar 

  63. Parker BL, Palmisano G, Edwards AVG, White MY, Engholm-Keller K, Lee A, Scott NE, Kolarich D, Hambly BD, Packer NH, Larsen MR, Cordwell SJ (2011) Quantitative N-linked glycoproteomics of myocardial ischemia and reperfusion injury reveals early remodeling in the extracellular environment. Mol Cell Proteomics. doi:10.1074/mcp.M110.006833

  64. Wei X, Herbst A, Ma D, Aiken J, Li L (2011) A quantitative proteomic approach to prion disease biomarker research: delving into the glycoproteome. J Proteome Res 10(6):2687–2702

    Article  CAS  Google Scholar 

  65. Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE, Coon JJ, Peters EC, Hsieh-Wilson LC (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3(6):339–348

    Article  CAS  Google Scholar 

  66. Kleifeld O, Doucet A, auf dem Keller U, Prudova A, Schilling O, Kainthan RK, Starr AE, Foster LJ, Kizhakkedathu JN, Overall CM (2010) Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nat Biotechnol 28(3):281–288

    Article  CAS  Google Scholar 

  67. Kleifeld O, Doucet A, Prudova A, auf dem Keller U, Gioia M, Kizhakkedathu JN, Overall CM (2011) Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nat Protoc 6(10):1578–1611

    Article  CAS  Google Scholar 

  68. Doucet A, Kleifeld O, Kizhakkedathu JN, Overall CM (2011) Identification of proteolytic products and natural protein N-Termini by Terminal Amine Isotopic Labeling of Substrates (TAILS) In: gel-free proteomics. methods in molecular biology, vol 753. Humana, Totowa, pp 273–287

    Google Scholar 

  69. Schilling O, Barré O, Huesgen PF, Overall CM (2010) Proteome-wide analysis of protein carboxy termini: C terminomics. Nat Methods 7(7):508–511

    Article  CAS  Google Scholar 

  70. Schilling O, Huesgen PF, Barré O, Overall CM (2011) Identification and relative quantification of native and proteolytically generated protein C-termini from complex proteomes: C-terminome analysis. in: network biology: methods and applications. Methods Mol Biol 781:59–69

    Article  Google Scholar 

  71. Huesgen PF, Overall CM (2011) Physiol Plant 145(1):5–17

    Google Scholar 

  72. Tholen S, Biniossek ML, Geßler A-L, Müller S, Weißer J, Kizhakkedathu JN, Reinheckel T, Schilling O (2011) Contribution of cathepsin L to secretome composition and cleavage pattern of mouse embryonic fibroblasts. Biol Chem 392(11):961–971

    Article  CAS  Google Scholar 

  73. Simonis N, Rual J-F, Carvunis A-R, Tasan M, Lemmens I, Hirozane-Kishikawa T, Hao T, Sahalie J, Venkatesan K, Gebreab F, Cevik S, Klitgord N, Fan C, Braun P, Li N, Ayivi-Guedehoussou N, Dann E, Bertin N, Szeto D, Dricot A, Yildirim M, Lin C, de Smet A-S, Kao H-L, Simon C, Smolyar A, Ahn J, Tewari M, Boxem M, Milstein S, Yu H, Dreze M, Vandenhaute J, Gunsalus K, Cusick M, Hill D, Tavernier J, Roth F, Vidal M (2008) Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat Methods 6(1):47–54

    Article  CAS  Google Scholar 

  74. Gingras A-C, Gstaiger M, Raught B, Aebersold R (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8(8):645–654

    Article  CAS  Google Scholar 

  75. Aye TT, Mohammed S, van den Toorn HWP, van Veen TAB, van der Heyden MAG, Scholten A, Heck AJR (2009) Selectivity in enrichment of cAMP-dependent protein kinase regulatory Subunits Type I and Type II and their interactors using modified cAMP affinity resins. Mol Cell Proteomics 8(5):1016–1028

    Article  CAS  Google Scholar 

  76. Cheng P-C, Chang H-K, Chen S-H (2009) Quantitative nanoproteomics for protein complexes (QNanoPX) related to estrogen transcriptional action. Mol Cell Proteomics 9(2):209–224

    Google Scholar 

  77. Cherkasov A, Hsing M, Zoraghi R, Foster LJ, See RH, Stoynov N, Jiang J, Kaur S, Lian T, Jackson L, Gong H, Swayze R, Amandoron E, Hormozdiari F, Dao P, Sahinalp C, Santos-Filho O, Axerio-Cilies P, Byler K, McMaster WR, Brunham RC, Finlay BB, Reiner NE (2010) Mapping the protein interaction network in methicillin-resistant staphylococcus aureus. J Proteome Res 10(3):1139–1150

    Article  CAS  Google Scholar 

  78. Dadvar P, O'Flaherty M, Scholten A, Rumpel K, Heck AJR (2009) A chemical proteomics based enrichment technique targeting the interactome of the PDE5 inhibitor PF-4540124. Mol Biosyst 5(5):472–482

    Article  CAS  Google Scholar 

  79. Kovanich D, van der Heyden MAG, Aye TT, van Veen TAB, Heck AJR, Scholten A (2010) Sphingosine kinase interacting protein is an A-kinase anchoring protein specific for Type I cAMP-dependent protein kinase. ChemBioChem 11(7):963–971

    Article  CAS  Google Scholar 

  80. Raijmakers R, Dadvar P, Pelletier S, Gouw J, Rumpel K, Heck AJR (2010) Target profiling of a small library of phosphodiesterase 5 (PDE5) inhibitors using chemical proteomics. ChemMedChem 5(11):1927–1936

    Article  CAS  Google Scholar 

  81. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert J-P, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams S-L, Moran MF, Morin GB, Topaloglou T, Figeys D (2007) Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 3:89

    Article  CAS  Google Scholar 

  82. Bantscheff M, Scholten A, Heck AJR (2009) Revealing promiscuous drug–target interactions by chemical proteomics. Drug Discov Today 14(21–22):1021–1029

    Article  CAS  Google Scholar 

  83. Scholten A, Aye TT, Heck AJR (2008) A multi-angular mass spectrometric view at cyclic nucleotide dependent protein kinases: in vivo characterization and structure/function relationships. Mass Spectrom Rev 27(4):331–353

    Article  CAS  Google Scholar 

  84. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5(12):959–970

    Article  CAS  Google Scholar 

  85. Means CK, Lygren B, Langeberg LK, Jain A, Dixon RE, Vega AL, Gold MG, Petrosyan S, Taylor SS, Murphy AN, Ha T, Santana LF, Tasken K, Scott JD (2011) An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase A at mitochondria. Proc Natl Acad Sci USA 108(48):E1227–E1235

    Article  CAS  Google Scholar 

  86. Gouw JW, Tops BBJ, Krijgsveld J (2011) Metabolic labeling of model organisms using heavy nitrogen (15 N). In: gel free proteomics: methods and protocols, methods in molecular biology, vol 753. Humana, Totowa, pp 29–42

    Google Scholar 

  87. Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O Labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73(13):2836–2842

    Article  CAS  Google Scholar 

  88. Bantscheff M, Dümpelfeld B, Kuster B (2004) Femtomol sensitivity post-digest 18O labeling for relative quantification of differential protein complex composition. Rapid Comm Mass Spectrom 18(8):869–876

    Article  CAS  Google Scholar 

  89. Kwok MCM, Holopainen JM, Molday LL, Foster LJ, Molday RS (2008) Proteomics of photoreceptor outer segments identifies a subset of SNARE and Rab proteins implicated in membrane vesicle trafficking and fusion. Mol Cell Proteomics 7(6):1053–1066

    Article  CAS  Google Scholar 

  90. Kantawong F, Burgess KEV, Jayawardena K, Hart A, Burchmore RJ, Gadegaard N, Oreffo ROC, Dalby MJ (2009) Whole proteome analysis of osteoprogenitor differentiation induced by disordered nanotopography and mediated by ERK signalling. Biomaterials 30(27):4723–4731

    Article  CAS  Google Scholar 

  91. Chen S-H, Wang Y-W, Hsu J-L, Chang H-Y, Wang C-Y, Shen P-T, Chiang C-W, Chuang J-J, Tsai H-W, Gu P-W, Chang F-C, Liu H-S, Chow N-H (2010) Nucleophosmin in the pathogenesis of arsenic-related bladder carcinogenesis revealed by quantitative proteomics. Toxicol Appl Pharmacol 242(2):126–135

    Article  CAS  Google Scholar 

  92. Bleijerveld OB, Brakenhoff RH, Schaaij-Visser TBM, Damen JMA, Altelaar AFM, Heck AJR, Leemans CR, Slijper M (2011) Protein signatures associated with tumor cell dissemination in head and neck cancer. J Proteomics 74(4):558–566

    Article  CAS  Google Scholar 

  93. Chan QWT, Mutti NS, Foster LJ, Kocher SD, Amdam GV, Wolschin F (2011) The worker honeybee fat body proteome is extensively remodeled preceding a major life-history transition. PLoS One 6(9):e24794

    Article  CAS  Google Scholar 

  94. Huang H-J, Tsai M-L, Chen Y-W, Chen S-H (2011) Quantitative shot-gun proteomics and MS-based activity assay for revealing gender differences in enzyme contents for rat liver microsome. J Proteomics 74(12):2734–2744

    Article  CAS  Google Scholar 

  95. Cheng H-L, Huang H-J, Ou B-Y, Chow N-H, Chen Y-W, Tzai T-S, Wu C-J, Chen S-H (2011) Urinary CD14 as a potential biomarker for benign prostatic hyperplasia - discovery by combining MALDI-TOF-based biostatistics and ESI-MS/MS-based stable-isotope labeling. Proteomics Clin Appl 5(3–4):121–132

    Article  CAS  Google Scholar 

  96. Lu J, Boeren S, de Vries SC, van Valenberg HJF, Vervoort J, Hettinga K (2011) Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J Proteomics 75(1):34–43

    Article  CAS  Google Scholar 

  97. Ytterberg AJ, Peltier JB, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140(3):984–997

    Article  CAS  Google Scholar 

  98. Murphy JP, Kong F, Pinto DM, Wang-Pruski G (2010) Relative quantitative proteomic analysis reveals wound response proteins correlated with after-cooking darkening. Proteomics 10(23):4258–4269

    Article  CAS  Google Scholar 

  99. Wijte D, van Baar BLM, Heck AJR, Altelaar AFM (2011) Probing the proteome response to toluene exposure in the solvent tolerant pseudomonas putida S12. J Proteome Res 10(2):394–403

    Article  CAS  Google Scholar 

  100. Tolonen AC, Haas W, Chilaka AC, Aach J, Gygi SP, Church GM (2011) Proteome-wide systems analysis of a cellulosic biofuel-producing microbe. Mol Syst Biol 7:461

    Article  Google Scholar 

  101. Wu C-J, Chen Y-W, Tai J-H, Chen S-H (2011) Quantitative phosphoproteomics studies using stable isotope dimethyl labeling coupled with IMAC-HILIC-nanoLC−MS/MS for estrogen-induced transcriptional regulation. J Proteome Res 10(3):1088–1097

    Article  CAS  Google Scholar 

  102. Kozlov SV, Graham ME, Jakob B, Tobias F, Kijas AW, Tanuji M, Chen P, Robinson PJ, Taucher-Scholz G, Suzuki K, So S, Chen D, Lavin MF (2011) Autophosphorylation and ATM Activation: additional sites add to the complexity. J Biol Chem 286(11):9107–9119

    Article  CAS  Google Scholar 

  103. Oberprieler NG, Lemeer S, Kalland ME, Torgersen KM, Heck AJR, Tasken K (2010) High-resolution mapping of prostaglandin E(2)-dependent signaling networks identifies a constitutively active PKA signaling node in CD8(+)CD45RO(+) T cells. Blood 116(13):2253–2265

    Article  CAS  Google Scholar 

  104. Ortega-Gutierrez S, Leung D, Ficarro S, Peters EC, Cravatt BF (2008) Targeted disruption of the PME-1 gene causes loss of demethylated PP2A and perinatal lethality in mice. PLoS One 3(7):e2468

    Article  CAS  Google Scholar 

  105. Hsu J-L, Wang L-Y, Wang S-Y, Lin C-H, Ho K-C, Shi F-K, Chang I-F (2009) Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana. Proteome Sci 7:42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We kindly acknowledge all members of the Heck group for their contributions. This work was in part supported by the PRIME-XS project (grant agreement number 262067), funded by the European Union Seventh Framework Programme, the Netherlands Proteomics Centre, embedded in the Netherlands Genomics Initiative, the Centre for Biomedical Genetics, the Netherlands Organization for Scientific Research (NWO) with a VIDI grant (700.10.429), and the Netherlands Bioinformatics Centre. D.K. is funded by Utrecht Institute for Pharmaceutical Sciences (UIPS) and a Royal Thai Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. R. Heck.

Additional information

Published in the topical issue Quantitative Mass Spectrometry in Proteomics with guest editors Bernhard Kuster and Marcus Bantscheff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovanich, D., Cappadona, S., Raijmakers, R. et al. Applications of stable isotope dimethyl labeling in quantitative proteomics. Anal Bioanal Chem 404, 991–1009 (2012). https://doi.org/10.1007/s00216-012-6070-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6070-z

Keywords

Navigation