Skip to main content
Log in

An Interplay Between Infrared Multiphoton Dissociation Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry and Density Functional Theory Computations in the Characterization of a Tripodal Quinolin-8-Olate Gd(III) Complex

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

A new hexadentate, tripodal 8-hydroxyquinoline based ligand (QH3) and its gadolinium(III) tris-chelated (GdQ) complex with hemicage structure was investigated by using high resolution Fourier-transform ion cyclotron resonance mass spectrometry (FTICRMS). The protonated adduct of the free ligand and its hemicage tripodal Gd(III) complex, [GdQ + H]+, were first observed in experiments of electrospray ionization (ESI) with a linear ion trap (LTQ) mass spectrometer and further investigated by using high resolution FTICRMS. Gas-phase dissociation of the protonated Gd(III) complex, by infrared multiphoton dissociation (IRMPD) FTICR MS, demonstrated a fragmentation pattern with six main product cluster ions labeled as [Fn]+ (n = 1 up to 6). These product ions suggest the elimination of 7-amino-alkyl or 7-alkyl chains of the hemicage moiety. High resolution MS conditions allowed the elucidation of the fragmentation pattern and product ion structures along with the determination, among the isotopic pattern of Gd, of the chemical compositions of closely related species, which differ in terms of hydrogen content. Among the Gd six naturally stable isotopes, 158Gd is the most abundant, and its peak within each cluster was used as a reference for distinguishing each product ions. Computational DFT investigations were applied to give support to some hypothesis of fragmentation pathways, which could not have been easily justified on the basis of the experimental work. Furthermore, computational studies suggested the coordination geometry of the protonated parent complex and the five- and four-coordinated complexes, which derive from its fragmentation. Furthermore, experimental and computational evidences were collected about the octet spin state of the parent compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6
Scheme 2

Similar content being viewed by others

References

  1. Santos, L.S. (ed.): Reactive Intermediates: MS Investigations in Solution. Wiley-VCH, Weinheim (2010)

    Google Scholar 

  2. Dyson, P.J., Scott McIndoe, J.: Analysis of organometallic compounds using ion trap mass spectrometry. Inorg. Chim. Acta 354, 68–74 (2003)

    Article  CAS  Google Scholar 

  3. Qian, R., Guo, H., Liao, Y., Guo, Y., Ma, S.: Probing the mechanism of palladium-catalyzed addition of organoboronic acids to allenes in the presence of AcOH with ESI-FTMS. Angew. Chem. Int. Ed. 44, 4771–4774 (2005)

    Article  CAS  Google Scholar 

  4. Mosely, J.A., Murray, B.S., Parker, D.: Electron-capture dissociation and collision-induced dissociation of lanthanide metal-ligand complexes and lanthanide metal-ligand complexes bound to phosphopeptides. Eur. J. Mass Spectrom. 15(2), 145–155 (2009)

    Article  CAS  Google Scholar 

  5. Lau, R.L.C., Jiang, J., Ng, D.K.P., Chan, T.-W.D.: Fourier Transform ion cyclotron resonance studies of Lanthanide(III) porphyrin-phthalocyanineheteroleptic sandwich complexes using electrospray ionization. J. Am. Soc. Mass Spectrom. 8, 161–169 (1997)

    Article  CAS  Google Scholar 

  6. Godin, B., Tasciotti, E., Liu, X., Serda, R.E., Ferrari, M.: Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc. Chem. Res. 18, 979–989 (2011)

    Article  Google Scholar 

  7. Henig, J., Tóth, E., Engelmann, J., Gottschalk, S., Mayer, H.A.: Macrocyclic Gd3+ chelates attached to a silsesquioxane core as potential magnetic resonance imaging contrast agents: synthesis, physicochemical characterization, and stability studies. Inorg. Chem. 49, 6124–6138 (2010)

    Google Scholar 

  8. Soroka, K., Vithanage, R.S., Phillips, D.A., Walker, B., Dasgupta, P.K.: Fluorescence properties of metal complexes of 8-hydroxyquinoline-5-sulfonic acid and chromatographic applications. Anal. Chem. 59, 629–636 (1987)

    Article  CAS  Google Scholar 

  9. Hollingshead, R.G.W.: Oxine and Its Derivatives, vol. I-IV. Butterworths, London (1954–1956)

    Google Scholar 

  10. Phillips, J.P.: The reactions of 8-quinolinol. Chem. Rev. 56, 271–297 (1956)

    Article  CAS  Google Scholar 

  11. Hollingshead, R.G.W.: Studies on oxine and its derivatives: the sensitivity and selectivity of some 7-substituted 8-hydroxyquinoline-5-sulphonic acids and some 2-substituted 8-hydroxyquinoline-4-carboxylic acids towards certain metals. Anal. Chim. Acta 19, 447–457 (1958)

    Google Scholar 

  12. Dowlings, S.D., Seitz, W.R.: Effect of metal–ligand ratio on polarization of fluorescence from metal-8-quinolinol complexes. Spectrochim. Acta Part A: Mol. Spectrosc. 40, 991–993 (1984)

    Article  Google Scholar 

  13. Fernandez-Gutierrez, A., Munoz de la Pena, A.: In: Schulman, S.G. (ed.) Molecular luminescence spectroscopy. Methods and Application, Part I, pp. 371–546. Wiley, New York (1985)

    Google Scholar 

  14. Farruggia, G., Iotti, S., Prodi, L., Montalti, M., Zaccheroni, N., Savage, P.B., Trapani, V., Sale, P., Wolf, F.I.: 8-hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells. J. Am. Chem. Soc. 128, 344–350 (2006)

    Article  CAS  Google Scholar 

  15. Bardez, E., Devol, I., Larrey, B., Valeur, B.: Excited State Processes in 8-hydroxyquinoline: photoinduced tautomerization and solvation effects. J. Phys. Chem. B 101, 7786–7793 (1997)

    Article  CAS  Google Scholar 

  16. Amati, M., Belviso, S., Cristinziano, P., Minichino, C., Lelj, F., Aiello, I., La Deda, M., Ghedini, M.: 8-Hydroxyquinoline monomer, water adducts, and dimer. Environmental influences on structure, spectroscopic properties, and relative stability of cis and trans conformers. J. Phys. Chem. 111, 13403–13414 (2007)

    Article  CAS  Google Scholar 

  17. Tang, C.W., VanSlyke, S.A.: Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987)

    Article  CAS  Google Scholar 

  18. Zhigang, L., Hong, M.: Organic Light-EmittingMaterials and Devices, Chap. 3. Boca Raton, CRC Press: Taylor and Francis Group (2007)

    Google Scholar 

  19. Amati, M., Lelj, F.: Luminescent compounds fac- and mer-aluminum tris(quinolin-8-olate). A pure and hybrid density functional theory and time-dependent density functional theory investigation of their electronic and spectroscopic properties. J. Phys. Chem. A 107, 2560–2569 (2003)

    Google Scholar 

  20. Tallec, G., Imbert, D., Fries, P.H., Mazzanti, M.: Highly stable and soluble bis-aqua Gd, Nd. Yb complexes as potential bimodal MRI/NIR Imaging Agents. Dalton Trans. 39, 9490–9492 (2010)

    Article  CAS  Google Scholar 

  21. Eliseevaa, S.V., Bünzli, J.-C.G.: Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010)

    Article  Google Scholar 

  22. Marshall, A.G., Hendrickson, C.L., Jackson, G.S.: Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998)

    Article  CAS  Google Scholar 

  23. Marshall, A.G.: Milestones in Fourier transform ion cyclotron resonance mass spectrometry technique development. Int. J. Mass Spectrom. 200, 331–356 (2000)

    Article  CAS  Google Scholar 

  24. Gauthier, J.W., Trautman, T.R., Jacobson, D.B.: Sustained off-resonance irradiation for collision-activated dissociation involving Fourier transform mass spectrometry. Collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal. Chim. Acta 246, 211–225 (1991)

    Google Scholar 

  25. Woodlin, R.L., Bomse, D.S., Beauchamp, J.L.: Multiphoton dissociation of molecules with low power continuous wave infrared laser radiation. J. Am. Chem. Soc. 100, 3248–3250 (1978)

    Article  Google Scholar 

  26. Little, D.P., Speir, J.P., Senko, M.W., O’Connor, P.B., McLafferty, F.W.: Infrared multiphoton dissociation of large multiply-charged ions for biomolecule sequencing. Anal. Chem. 66, 2809–2815 (1994)

    Article  CAS  Google Scholar 

  27. Dunbar, R.C., McMahon, T.B.: Activation of unimolecular reactions by ambient blackbody radiation. Science 279, 194–197 (1998)

    Article  CAS  Google Scholar 

  28. Price, W.D., Schnier, P.D., Williams, E.R.: Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation. Anal. Chem. 68, 859–866 (1996)

    Article  CAS  Google Scholar 

  29. McCormack, A.L., Jones, J.L., Wysocki, V.H.: Surface-induced dissociation of multiply protonated peptides. J. Am. Soc. Mass Spectrom. 3, 859–862 (1992)

    Article  CAS  Google Scholar 

  30. Chorush, R.A., Little, D.P., Beu, S.C., Wood, T.D., McLafferty, F.W.: Surface induced dissociation of multiply protonated proteins. Anal. Chem. 67, 1042–1046 (1995)

    Article  CAS  Google Scholar 

  31. Cooper, H.J., Hakansson, K., Marshall, A.G.: The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev. 24, 201–222 (2005)

    Article  CAS  Google Scholar 

  32. Chrisman, P.A., Pitteri, S.J., McLuckey, S.A.: Parallel ion parking: improving conversion of parents to first-generation products in electron transfer dissociation. Anal. Chem. 77, 3411–3414 (2005)

    Article  CAS  Google Scholar 

  33. Sleno, L., Volmer, D.A.: Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 39, 1091–1112 (2004)

    Article  CAS  Google Scholar 

  34. Laskin, J., Futrell, J.H.: Activation of large ions in FT-ICR mass spectrometry. Mass Spectrom. Rev. 24, 135–167 (2005)

    Article  CAS  Google Scholar 

  35. Cooper, H.J., March, R.E., Todd, J.F.J.: Practical aspects of ion trap mass spectrometry. Vol. V, Applications to ion trapping devices. CRC Press, Boca Raton (2010)

    Google Scholar 

  36. McFarland, M.A., Marshall, A.G., Hendrickson, C.L., Nilsson, C.L.: Structural characterization of the gm1 ganglioside by infrared multiphoton dissociation, electron capture dissociation, and electron detachment dissociation electrospray ionization FT-ICR MS/MS. J. Am. Soc. Mass Spectrom. 16, 752–762 (2005)

    Article  CAS  Google Scholar 

  37. Polfer, N.C.: Infrared multiple photon dissociation spectroscopy of trapped ions. Chem. Soc. Rev. 40, 2211–2221 (2011)

    Article  CAS  Google Scholar 

  38. Bianco, G., Labella, C., Pepe, A., Cataldi, T.R.I.: Scrambling of autoinducing precursor peptides investigated by infrared multiphoton dissociation with electrospray ionization and Fourier-transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 405(5), 1721–1732 (2013)

    Google Scholar 

  39. Cataldi, T.R.I., Ricciardi, G., Bianco, G., Pietrangeli, D., Abate, S.: Mass spectrometric evidence for collisionally induced removal of H(2) from monoanions of (10)B nido-carborane derivatives investigated by electrospray ionization quadrupole linear ion trap and Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 23, 1927–1933 (2009)

    Article  CAS  Google Scholar 

  40. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor. Chem. Acc. 120, 215–241 (2008)

    Article  CAS  Google Scholar 

  41. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford CT (2009)

    Google Scholar 

  42. Ditchfield, R., Hehre, W.J., Pople, J.A.: Self-consistent molecular orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971)

    Article  CAS  Google Scholar 

  43. Hehre, W.J., Ditchfield, R., Pople, J.A.: Self-consistent molecular orbital methods. 1. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys. 56, 2257–2261 (1972)

    Article  CAS  Google Scholar 

  44. Hariharan, P.C., Pople, J.A.: Accuracy of AH equilibrium geometries by single determinant molecular-orbital theory. Mol. Phys. 27, 209–214 (1974)

    Article  CAS  Google Scholar 

  45. Gordon, M.S.: The isomers of silacyclopropane. Chem. Phys. Lett. 76, 163–168 (1980)

    Article  CAS  Google Scholar 

  46. Hariharan, P.C., Pople, J.A.: Influence of polarization functions on molecular-orbital hydrogenation energies. Theo. Chim. Acta 28, 213–222 (1973)

    Article  CAS  Google Scholar 

  47. Nicklass, A., Dolg, M., Stoll, H., Preuss, H.: Ab initio energy-adjusted pseudopotentials for the noble gases Ne through Xe: calculation of atomic dipole and quadrupole polarizabilities. J. Chem. Phys. 102, 8942–8952 (1995)

    Google Scholar 

  48. Bacskay, G.B.A.: Quadratically convergent Hartree-Fock (QC-SCF) method. Application to closed systems. Chem. Phys. 61, 385–404 (1981)

    Article  CAS  Google Scholar 

  49. Fluckiger, P., Luthi, H.P., Portmann, S., Weber, J.: MOLEKEL 4.3. Swiss Center for Scientific Computing, Manno (2000–2002)

    Google Scholar 

  50. Portmann, S., Luthi, H.P.: MOLEKEL: an interactive molecular graphic tool. Chimia 54, 766–770 (2000)

    CAS  Google Scholar 

  51. De Bonis, M., Lelj, F. et al. manuscript in preparation.

  52. Wang, J., Oyler, K.D., Bernhard, S.: Synthesis and characterization of hemicaged 8-hydroxyquinoline chelates with enhanced electrochemical and photophysical properties. Inorg. Chem. 46, 5700–5706 (2007)

    Article  CAS  Google Scholar 

  53. Evans, D. F.: Determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. 2003–2005 (1959). doi:10.1039/JR9590002003

  54. Dickinson, W.C.: The time average magnetic field at the nucleus in nuclear magnetic resonance experiments. Phys. Rev. 81, 717–731 (1951)

    Article  CAS  Google Scholar 

  55. Bain, A.G., Berry, J.F.: Diamagnetic Corrections and Pascal’s Constants. J. Chem. Ed. 85, 532–535 (2008)

    Google Scholar 

  56. Weber, R.J.M., Southam, A.D., Sommer, U., Viant, M.R.: Characterization of isotopic abundance measurements in high resolution FT-ICR and Orbitrap mass spectra for improved confidence of metabolite identification. Anal. Chem. 83, 3737–3743 (2011)

    Article  CAS  Google Scholar 

  57. do Lago, C.L., Kascheres, C.: New method of isotope pattern analysis. Comput. Chem. 15, 149–155 (1991)

    Article  Google Scholar 

  58. Rosman, K.J.R., Taylor, P.D.P.: Isotopic compositions of the elements 1997 (Technical Report). Pure Appl. Chem. 70, 217–235 (1998)

    Article  CAS  Google Scholar 

  59. Henderson, W., Scott McIndoe, J.S.: The ESI MS behavior of main group organometallic compounds. Mass spectrometry of inorganic, coordination, and organometallic compounds, Chap 6. John Wiley, Chichester (2005)

    Book  Google Scholar 

  60. Audi, G., Wapstra, A.H.: The 1995 update to the atomic mass evaluation. Nucl. Phys. A 595, 409–480 (1995)

    Article  Google Scholar 

  61. Purcell, K. F., Kotz, J. C. In: Inorganic Chemistry, Chap 10. International Edition Holt-Saunders, Japan (1985)

  62. Sun, L.-N., Zhang, H.-J., Yu, J.-B., Yu, S.-Y., Peng, C.-Y., Dang, S., Guo, X.-M., Feng, J.: Near-Infrared emission from novel tris(8-hydroxyquinolinate)lanthanide(III) Complexes-functionalized Mesoporous SBA-15. Langmuir 24, 5500–5507 (2008)

    Article  CAS  Google Scholar 

  63. Bertini, I., Luchinat, C.: NMR of paramagnetic substances. Coord. Chem. Rev. 150, 1–300 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was performed by using the instrumental facilities of CIGAS Center supported by EU (Project no. 2915/12), Regione Basilicata and Università degli Studi della Basilicata (USB). M.D.B. thanks USB for the university research fellowship, which allowed her to work in the field of 8-hydroxyquinoline hemicage ligands for metal complexation. This work was supported by Consortium INSTM through the PRISMA 2007 project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tommaso R. I. Cataldi or Francesco Lelj.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 833 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bonis, M., Bianco, G., Amati, M. et al. An Interplay Between Infrared Multiphoton Dissociation Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry and Density Functional Theory Computations in the Characterization of a Tripodal Quinolin-8-Olate Gd(III) Complex. J. Am. Soc. Mass Spectrom. 24, 589–601 (2013). https://doi.org/10.1007/s13361-012-0570-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-012-0570-0

Key words

Navigation