Skip to main content

Advertisement

Log in

A different role of angiotensin II type 1a receptor in the development and hypertrophy of plantaris muscle in mice

  • Animal Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The role of angiotensin II type 1 (AT1) receptors in muscle development and hypertrophy remains unclear. This study was designed to reveal the effects that a loss of AT1 receptors has on skeletal muscle development and hypertrophy in mice. Eight-week-old male AT1a receptor knockout (AT1a−/−) mice were used for this experiment. The plantaris muscle to body weight ratio, muscle fiber cross-sectional area, and number of muscle fibers of AT1a−/− mice was significantly greater than wild type (WT) mice in the non-intervention condition. Next, the functional overload (OL) model was used to induce plantaris muscle hypertrophy by surgically removing the two triceps muscles consisting of the calf, soleus, and gastrocnemius muscles in mice. After 14 days of OL intervention, the plantaris muscle weight, the amount of fiber, and the fiber area increased. However, the magnitude of the increment of plantaris weight was not different between the two strains. Agtr1a mRNA expression did not change after OL in WT muscle. Actually, the Agt mRNA expression level of WT-OL was lower than WT-Control (C) muscle. An atrophy-related gene, atrogin-1 mRNA expression levels of AT1a−/−-C, WT-OL, and AT1a−/−-OL muscle were lower than that of WT-C muscle. Our findings suggest that AT1 receptor contributes to plantaris muscle development via atrogin-1 in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiho M, Nakashima H, Sakata M, Yamasa Y, Yamaguchi A, Sakuma K (2010) Expression profile of Notch-1 in mechanically overloaded plantaris muscle of mice. Life Sci 86(1–2):59–65. doi:10.1016/j.lfs.2009.11.011

    Article  PubMed  CAS  Google Scholar 

  • Akimoto T, Okuhira K, Aizawa K, Wada S, Honda H, Fukubayashi T, Ushida T (2013) Skeletal muscle adaptation in response to mechanical stress in p130cas−/− mice. Am J Physiol Cell Physiol 304(6):C541–C547. doi:10.1152/ajpcell.00243.2012

    Article  PubMed  CAS  Google Scholar 

  • Brewster UC, Setaro JF, Perazella MA (2003) The renin–angiotensin–aldosterone system: cardiorenal effects and implications for renal and cardiovascular disease states. Am J Med Sci 326(1):15–24

    Article  PubMed  Google Scholar 

  • Brink M, Price SR, Chrast J, Bailey JL, Anwar A, Mitch WE, Delafontaine P (2001) Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology 142(4):1489–1496

    PubMed  CAS  Google Scholar 

  • Di Bari M, van de Poll-Franse LV, Onder G, Kritchevsky SB, Newman A, Harris TB, Williamson JD, Marchionni N, Pahor M; Health, Aging and Body Composition Study (2004) Antihypertensive medications and differences in muscle mass in older persons: the Health, Aging and Body Composition Study. J Am Geriatr Soc 52(6):961–966. doi:10.1111/j.1532-5415.2004.52265.x

    Article  PubMed  Google Scholar 

  • Dodson S, Baracos VE, Jatoi A, Evans WJ, Cella D, Dalton JT, Steiner MS (2011) Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies. Annu Rev Med 62:265–279. doi:10.1146/annurev-med-061509-131248

    Article  PubMed  CAS  Google Scholar 

  • Domański M, Ciechanowski K (2012) Sarcopenia: a major challenge in elderly patients with end-stage renal disease. J Aging Res 2012:754739. doi:10.1155/2012/754739

    PubMed  PubMed Central  Google Scholar 

  • Fearon KC (2008) Cancer cachexia: developing multimodal therapy for a multidimensional problem. Eur J Cancer 44(8):1124–1132. doi:10.1016/j.ejca.2008.02.033

    Article  PubMed  CAS  Google Scholar 

  • Foley RN, Wang C, Ishani A, Collins AJ, Murray AM (2007) Kidney function and sarcopenia in the United States general population: NHANES III. Am J Nephrol 27(3):279–286. doi:10.1159/000101827

    Article  PubMed  Google Scholar 

  • Gensch N, Borchardt T, Schneider A, Riethmacher D, Braun T (2008) Different autonomous myogenic cell populations revealed by ablation of Myf5-expressing cells during mouse embryogenesis. Development 135(9):1597–1604. doi:10.1242/dev.019331

    Article  PubMed  CAS  Google Scholar 

  • Gordon SE, Davis BS, Carlson CJ, Booth FW (2001) ANG II is required for optimal overload-induced skeletal muscle hypertrophy. Am J Physiol Endocrinol Metab 280(1):E150–E159

    PubMed  CAS  Google Scholar 

  • Gumucio JP, Mendias CL (2013) Atrogin-1, MuRF-1, and sarcopenia. Endocrine 43(1):12–21. doi:10.1007/s12020-012-9751-7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hughes SM, Taylor JM, Tapscott SJ, Gurley CM, Carter WJ, Peterson CA (1993) Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118(4):1137–1147

    PubMed  CAS  Google Scholar 

  • Kim SJ, Roy RR, Kim JA, Zhong H, Haddad F, Baldwin KM, Edgerton VR (2008) Gene expression during inactivity-induced muscle atrophy: effects of brief bouts of a forceful contraction countermeasure. J Appl Physiol 105(4):1246–1254. doi:10.1152/japplphysiol.90668.2008

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim TN, Park MS, Lim KI, Yang SJ, Yoo HJ, Kang HJ, Song W, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM (2011) Skeletal muscle mass to visceral fat area ratio is associated with metabolic syndrome and arterial stiffness: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Res Clin Pract 93(2):285–291. doi:10.1016/j.diabres.2011.06.013

    Article  PubMed  Google Scholar 

  • Macpherson PC, Wang X, Goldman D (2011) Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle. J Cell Biochem 112(8):2149–2159. doi:10.1002/jcb.23136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McBride TA (2006) AT1 receptors are necessary for eccentric training-induced hypertrophy and strength gains in rat skeletal muscle. Exp Physiol 91(2):413–421. doi:10.1113/expphysiol.2005.032490

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA (2011) Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. J Physiol 589(Pt 7):1831–1846. doi:10.1113/jphysiol.2011.205658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Novak ML, Billich W, Smith SM, Sukhija KB, McLoughlin TJ, Hornberger TA, Koh TJ (2009) COX-2 inhibitor reduces skeletal muscle hypertrophy in mice. Am J Physiol Regul Integr Comp Physiol 296(4):R1132–R1139. doi:10.1152/ajpregu.90874.2008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oishi Y, Ogata T, Yamamoto KI, Terada M, Ohira T, Ohira Y, Taniguchi K, Roy RR (2008) Cellular adaptations in soleus muscle during recovery after hindlimb unloading. Acta Physiol 192(3):381–395. doi:10.1111/j.1748-1716.2007.01747.x

    Article  CAS  Google Scholar 

  • Onder G, Penninx BW, Balkrishnan R, Fried LP, Chaves PH, Williamson J, Carter C, Di Bari M, Guralnik JM, Pahor M (2002) Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study. Lancet 359(9310):926–930

    Article  PubMed  CAS  Google Scholar 

  • Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, de Rekeneire N, Harris TB, Kritchevsky S, Tylavsky FA, Nevitt M, Cho YW, Newman AB; Health, Aging, and Body Composition Study (2009) Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 32(11):1993–1997. doi:10.2337/dc09-0264

  • Pierzchalski P, Reiss K, Cheng W, Cirielli C, Kajstura J, Nitahara JA, Rizk M, Capogrossi MC, Anversa P (1997) p53 Induces myocyte apoptosis via the activation of the renin–angiotensin system. Exp Cell Res 234(1):57–65. doi:10.1006/excr.1997.3604

    Article  PubMed  CAS  Google Scholar 

  • Putman CT, Düsterhöft S, Pette D (2000) Satellite cell proliferation in low frequency-stimulated fast muscle of hypothyroid rat. Am J Physiol Cell Physiol 279(3):C682–C690

    PubMed  CAS  Google Scholar 

  • Rezk BM, Yoshida T, Semprun-Prieto L, Higashi Y, Sukhanov S, Delafontaine P (2012) Angiotensin II infusion induces marked diaphragmatic skeletal muscle atrophy. PLoS One 7(1):e30276. doi:10.1371/journal.pone.0030276

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roubenoff R, Castaneda C (2001) Sarcopenia-understanding the dynamics of aging muscle. JAMA 286(10):1230–1231

    Article  PubMed  CAS  Google Scholar 

  • Russell ST, Sanders PM, Tisdale MJ (2006) Angiotensin II directly inhibits protein synthesis in murine myotubes. Cancer Lett 231(2):290–294. doi:10.1016/j.canlet.2005.02.007

    Article  PubMed  CAS  Google Scholar 

  • Sanada K, Iemitsu M, Murakami H, Gando Y, Kawano H, Kawakami R, Tabata I, Miyachi M (2012) Adverse effects of coexistence of sarcopenia and metabolic syndrome in Japanese women. Eur J Clin Nutr 66(10):1093–1098. doi:10.1038/ejcn.2012.43

    Article  PubMed  CAS  Google Scholar 

  • Sanders PM, Russell ST, Tisdale MJ (2005) Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia. Br J Cancer 93(4):425–434. doi:10.1038/sj.bjc.6602725

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Semprun-Prieto LC, Sukhanov S, Yoshida T, Rezk BM, Gonzalez-Villalobos RA, Vaughn C, Michael Tabony A, Delafontaine P (2011) Angiotensin II induced catabolic effect and muscle atrophy are redox dependent. Biochem Biophys Res Commun 409(2):217–221. doi:10.1016/j.bbrc.2011.04.122

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Song YH, Li Y, Du J, Mitch WE, Rosenthal N, Delafontaine P (2005) Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 115(2):451–458. doi:10.1172/JCI22324

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Strawbridge WJ, Shema SJ, Balfour JL, Higby HR, Kaplan GA (1998) Antecedents of frailty over three decades in an older cohort. J Gerontol B Psychol Sci Soc Sci 53(1):S9–S16

    Article  PubMed  CAS  Google Scholar 

  • Sugaya T, Nishimatsu S, Tanimoto K, Takimoto E, Yamagishi T, Imamura K, Goto S, Imaizumi K, Hisada Y, Otsuka A, Uchida H, Sugiura M, Fukuta K, Fukamizu A, Murakami K (1995) Angiotensin II type 1a receptor-deficient mice with hypotension and hyperreninemia. J Biol Chem 270(32):18719–18722

    Article  PubMed  CAS  Google Scholar 

  • Sukhanov S, Semprun-Prieto L, Yoshida T, Michael Tabony A, Higashi Y, Galvez S, Delafontaine P (2011) Angiotensin II, oxidative stress and skeletal muscle wasting. Am J Med Sci 342(2):143–147. doi:10.1097/MAJ.0b013e318222e620

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumukadas D, Witham MD, Struthers AD, McMurdo ME (2007) Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial. CMAJ 177(8):867–874. doi:10.1503/cmaj.061339

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Semprun-Prieto L, Sukhanov S, Delafontaine P (2010) IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression. Am J Physiol Heart Circ Physiol 298(5):H1565–H1570. doi:10.1152/ajpheart.00146.2010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Akiyoshi Fukamizu for providing the ATla−/− mice. We would also like to thank Ms. Noriko Tamura and Ms. Yasuko Matsuda for their excellent technical assistance.

Grants

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number T25930017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Zempo.

Additional information

Communicated by: Maciej Szydlowski

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zempo, H., Suzuki, Ji., Ogawa, M. et al. A different role of angiotensin II type 1a receptor in the development and hypertrophy of plantaris muscle in mice. J Appl Genetics 57, 91–97 (2016). https://doi.org/10.1007/s13353-015-0291-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-015-0291-8

Keywords

Navigation