Skip to main content
Log in

Current controversies in Niemann–Pick C1 disease: steroids or gangliosides; neurons or neurons and glia

  • Human Genetics • Review
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

There has been a recent explosion in research on Niemann–Pick type C disease. Much of the work has used mouse models or cells in culture to elucidate the pathophysiological mechanisms resulting in the phenotype of the disease. This work has generated several contrasting views on the mechanism, which are labeled ‘controversies’ here. In this review, two of these controversies are explored. The first concerns which stored materials are causative in the disease: cholesterol, gangliosides and sphingolipids, or something else? The second concerns which cells in the body require Npc1 in order to function properly: somatic cells, neurons only, or neurons and glia? For the first controversy, a clear answer has emerged. More research will be needed in order to definitively solve the second controversy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad I, Lope-Piedrafita S, Bi X, Hicks C, Yao Y, Yu C, Chaitkin E, Howison CM, Weberg L, Trouard TP, Erickson RP (2005) Allopregnanolone treatment, both as a single injection or repetitively, delays demyelination and enhances survival of Niemann–Pick C mice. J Neurosci Res 82:811–821

    Article  PubMed  CAS  Google Scholar 

  • Atger VM, de la Llera Moya M, Stoudt GW, Rodrigueza WV, Phillips MC, Rothblat GH (1997) Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells. J Clin Invest 99:773–780

    Article  PubMed  CAS  Google Scholar 

  • Baudry M, Yao Y, Simmons D, Liu J, Bi X (2003) Postnatal development of inflammation in a murine model of Niemann–Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol 184:887–903

    Article  PubMed  CAS  Google Scholar 

  • Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, Rock CL, Pruitt MA, Yang F, Hudspeth B, Hu S, Faull KF, Teter B, Cole GM, Frautschy SA (2008) Curcumin structure–function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 326:196–208

    Article  PubMed  CAS  Google Scholar 

  • Bilmen JG, Khan SZ, Javed MH, Michelangeli F (2001) Inhibition of the SERCA Ca2+ pumps by curcumin. Curcumin putatively stabilizes the interaction between the nucleotide-binding and phosphorylation domains in the absence of ATP. Eur J Biochem 268:6318–6327

    Article  PubMed  CAS  Google Scholar 

  • Blanchard J, Proniuk S (1999) Some important considerations in the use of cyclodextrins. Pharm Res 16:1796–1798

    Article  PubMed  CAS  Google Scholar 

  • Borbon IA, Erickson RP (2011) Interactions of Npc1 and amyloid accumulation/deposition in the APP/PS1 mouse model of Alzheimer’s. J Appl Genet 52:213–218

    Article  PubMed  CAS  Google Scholar 

  • Borbon IA, Hillman Z, Duran E Jr, Kiela PR, Frautschy SA, Erickson RP (2012a) Lack of efficacy of curcumin on neurodegeneration in the mouse model of Niemann–Pick C1. Pharm Biochem Behav 101:125–131

    Article  CAS  Google Scholar 

  • Borbon I, Totenhagen J, Fiorenza MT, Canterini S, Ke W, Trouard T, Erickson RP (2012b) Niemann–Pick C1 mice, a model of “juvenile Alzheimer’s disease”, with normal gene expression in neurons and fibrillary astrocytes show long term survival and delayed neurodegeneration. J Alzheimers Dis 30:875–887

    PubMed  CAS  Google Scholar 

  • Boyles JK, Pitas RE, Wilson E, Mahley RW, Taylor JM (1985) Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Invest 76:1501–1513

    Article  PubMed  CAS  Google Scholar 

  • Busso D, Oñate-Alvarado MJ, Balboa E, Zanlungo S, Moreno RD (2010) Female infertility due to anovulation and defective steroidogenesis in NPC2 deficient mice. Mol Cell Endocrinol 315:299–307

    Article  PubMed  CAS  Google Scholar 

  • Camargo F, Erickson RP, Garver WS, Hossain GS, Carbone PN, Heidenreich RA, Blanchard J (2001) Cyclodextrins in the treatment of a mouse model of Niemann–Pick C disease. Life Sci 70:131–142

    Article  PubMed  CAS  Google Scholar 

  • Carpenter TO, Gerloczy A, Pitha J (1995) Safety of parenteral hydroxypropyl beta-cyclodextrin. J Pharm Sci 84:222–225

    Article  PubMed  CAS  Google Scholar 

  • Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Strauss JF 3rd, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O’Neill RR, van Diggelen OP, Elleder M, Patterson MC, Brady RO, Vanier MT, Pentchev PG, Tagle DA (1997) Niemann–Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231

    Article  PubMed  CAS  Google Scholar 

  • Cheruku SR, Xu Z, Dutia R, Lobel P, Storch J (2006) Mechanism of cholesterol transfer from the Niemann–Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport. J Biol Chem 281:31594–31604

    Article  PubMed  CAS  Google Scholar 

  • Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433

    Article  PubMed  CAS  Google Scholar 

  • Custer SK, Garden GA, Gill N, Rueb U, Libby RT, Schultz C, Guyenet SJ, Deller T, Westrum LE, Sopher BL, La Spada AR (2006) Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. Nat Neurosci 9:1302–1311

    Article  PubMed  CAS  Google Scholar 

  • Davidson CD, Ali NF, Micsenyi MC, Stephney G, Renault S, Dobrenis K, Ory DS, Vanier MT, Walkley SU (2009) Chronic cyclodextrin treatment of murine Niemann–Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One 4(9):e6951. doi:10.1371/journal.pone.0006951

    Article  PubMed  CAS  Google Scholar 

  • De Caprio J, Yun J, Javitt NB (1992) Bile acid and sterol solubilization in 2-hydroxypropyl-beta-cyclodextrin. J Lipid Res 33:441–443

    PubMed  Google Scholar 

  • Deffieu MS, Pfeffer SR (2011) Niemann–Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc Natl Acad Sci USA 108:18932–18936

    Article  PubMed  CAS  Google Scholar 

  • Donohue C, Marion S, Erickson RP (2009) Expression of Npc1 in glial cells corrects sterility in Npc1−/− mice. J Appl Genet 50:385–390

    Article  PubMed  CAS  Google Scholar 

  • Elrick MJ, Pacheco CD, Yu T, Dadgar N, Shakkottai VG, Ware C, Paulson HL, Lieberman AP (2010) Conditional Niemann–Pick C mice demonstrate cell autonomous Purkinje cell neurodegeneration. Hum Mol Genet 19:837–847

    Article  PubMed  CAS  Google Scholar 

  • Erickson RP (2007) A first therapy for Niemann–Pick C. Lancet Neurol 6:748–749

    Article  PubMed  CAS  Google Scholar 

  • Erickson RP, Bernard O (2002) Studies on neuronal death in the mouse model of Niemann–Pick C disease. J Neurosci Res 68:738–744

    Article  PubMed  CAS  Google Scholar 

  • Erickson RP, Bhattacharyya A, Hunter RJ, Heidenreich RA, Cherrington NJ (2005) Liver disease with altered bile acid transport in Niemann–Pick C mice on a high-fat, 1 % cholesterol diet. Am J Physiol Gastrointest Liver Physiol 289:G300–G307

    Article  PubMed  CAS  Google Scholar 

  • Erickson RP, Larson-Thomé K, Weberg L, Szybinska A, Mossakowska M, Styczynska M, Barcikowska M, Kuznicki J (2008) Variation in NPC1, the gene encoding Niemann–Pick C1, a protein involved in intracellular cholesterol transport, is associated with Alzheimer disease and/or aging in the Polish population. Neurosci Lett 447:153–157

    Article  PubMed  CAS  Google Scholar 

  • Falk T, Garver WS, Erickson RP, Wilson JM, Yool AJ (1999) Expression of Niemann–Pick type C transcript in rodent cerebellum in vivo and in vitro. Brain Res 839:49–57

    Article  PubMed  CAS  Google Scholar 

  • Favier ML, Rémésy C, Moundras C, Demigné C (1995) Effect of cyclodextrin on plasma lipids and cholesterol metabolism in the rat. Metabolism 44:200–206

    Article  PubMed  CAS  Google Scholar 

  • Férézou J, Riottot M, Sérougne C, Cohen-Solal C, Catala I, Alquier C, Parquet M, Juste C, Lafont H, Mathé D, Corring T, Lutton C (1997) Hypocholesterolemic action of beta-cyclodextrin and its effects on cholesterol metabolism in pigs fed a cholesterol-enriched diet. J Lipid Res 38:86–100

    PubMed  Google Scholar 

  • Friedland N, Liou HL, Lobel P, Stock AM (2003) Structure of a cholesterol-binding protein deficient in Niemann–Pick type C2 disease. Proc Natl Acad Sci USA 100:2512–2517

    Article  PubMed  CAS  Google Scholar 

  • Frijlink HW, Eissens AC, Hefting NR, Poelstra K, Lerk CF, Meijer DKF (1991) The effect of parenterally administered cyclodextrins on cholesterol levels in the rat. Pharm Res 8:9–16

    Article  PubMed  CAS  Google Scholar 

  • Garver WS, Heidenreich RA, Erickson RP, Thomas MA, Wilson JM (2000) Localization of the murine Niemann–Pick C1 protein to two distinct intracellular compartments. J Lipid Res 41:673–687

    PubMed  CAS  Google Scholar 

  • Garver WS, Jelinek D, Meaney FJ, Flynn J, Pettit KM, Shepherd G, Heidenreich RA, Vockley CMW, Castro G, Francis GA (2009) The national Niemann–Pick type C1 disease database: correlation of lipid profiles, mutations, and biochemical phenotypes. J Lipid Res 51:406–415

    Article  PubMed  CAS  Google Scholar 

  • Gerloczy A, Hoshino T, Pitha J (1994) Safety of oral cyclodextrins: effects of hydroxypropyl cyclodextrins, cyclodextrin sulfates and cationic cyclodextrins on steroid balance in rats. J Pharm Sci 83:193–196

    Article  PubMed  CAS  Google Scholar 

  • German DC, Quintero EM, Liang CL, Ng B, Punia S, Xie C, Dietschy JM (2001) Selective neurodegeneration, without neurofibrillary tangles, in a mouse model of Niemann–Pick C disease. J Comp Neurol 433:415–425

    Article  PubMed  CAS  Google Scholar 

  • Gévry NY, Lopes FL, Ledoux S, Murphy BD (2004) Aberrant intracellular cholesterol transport disrupts pituitary and ovarian function. Mol Endocrinol 18:1778–1786

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595

    Article  PubMed  CAS  Google Scholar 

  • Gondré-Lewis MC, McGlynn R, Walkley SU (2003) Cholesterol accumulation in NPC1-deficient neurons is ganglioside dependent. Curr Biol 13:1324–1329

    Article  PubMed  CAS  Google Scholar 

  • Greer WL, Riddell DC, Gillan TL, Girouard GS, Sparrow SM, Byers DM, Dobson MJ, Neumann PE (1998) The Nova Scotia (Type D) form of Niemann–Pick disease is caused by a G3097 --> T transversion in NPC1. Am J Hum Genet 63:52–54

    Article  PubMed  CAS  Google Scholar 

  • Griffin LD, Gong W, Verot L, Mellon SH (2004) Niemann–Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nat Med 10:704–711

    Article  PubMed  CAS  Google Scholar 

  • Higashi Y, Murayama S, Pentchev PG, Suzuki K (1993) Cerebellar degeneration in the Niemann–Pick type C mouse. Acta Neuropathol 85:175–184

    Article  PubMed  CAS  Google Scholar 

  • Higgins ME, Davies JP, Chen FW, Ioannou YA (1999) Niemann–Pick C1 is a late endosome-resident protein that transiently associates with lysosomes and the trans-Golgi network. Mol Genet Metab 68:1–13

    Article  PubMed  CAS  Google Scholar 

  • Hu CY, Ong WY, Patel SC (2000) Regional distribution of NPC1 protein in monkey brain. J Neurocytol 29:765–773

    Article  PubMed  CAS  Google Scholar 

  • Ilangumaran S, Hoessli DC (1998) Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J 335:433–440

    PubMed  CAS  Google Scholar 

  • Infante RE, Radhakrishnan A, Abi-Mosleh L, Kinch LN, Wang ML, Grishin NV, Goldstein JL, Brown MS (2008a) Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J Biol Chem 283:1064–1075

    Article  PubMed  CAS  Google Scholar 

  • Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL (2008b) NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci USA 105:15287–15292

    Article  PubMed  CAS  Google Scholar 

  • Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111

    Article  PubMed  CAS  Google Scholar 

  • Kapur R, Donohue C, Jelinek D, Erickson RP (2009) Amelioration of enteric neuropathology in a mouse model of Niemann–Pick C by Npc1 expression in enteric glia. J Neurosci Res 87:2994–3001

    Article  PubMed  CAS  Google Scholar 

  • Karten B, Hayashi H, Francis GA, Campenot RB, Vance DE, Vance JE (2005) Generation and function of astroglial lipoproteins from Niemann–Pick type C1-deficient mice. Biochem J 387:779–788

    Article  PubMed  CAS  Google Scholar 

  • Kelly DA, Portmann B, Mowat AP, Sherlock S, Lake BD (1993) Niemann–Pick disease type C: diagnosis and outcome in children, with particular reference to liver disease. J Pediatr 123:242–247

    Article  PubMed  CAS  Google Scholar 

  • Kilsdonk EP, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ, Phillips MC, Rothblat GH (1995) Cellular cholesterol efflux mediated by cyclodextrins. J Biol Chem 270:17250–17256

    Article  PubMed  CAS  Google Scholar 

  • Klein RL, Dayton RD, Leidenheimer NJ, Jansen K, Golde TE, Zweig RM (2006) Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins. Mol Ther 13:517–527

    Article  PubMed  CAS  Google Scholar 

  • Ko DC, Binkley J, Sidow A, Scott MP (2003) The integrity of a cholesterol-binding pocket in Niemann–Pick C2 protein is necessary to control lysosome cholesterol levels. Proc Natl Acad Sci USA 100:2518–2525

    Article  PubMed  CAS  Google Scholar 

  • Ko DC, Milenkovic L, Beier SM, Manuel H, Buchanan J, Scott MP (2005) Cell-autonomous death of cerebellar purkinje neurons with autophagy in Niemann–Pick type C disease. PLoS Genet 1:81–95

    Article  PubMed  CAS  Google Scholar 

  • Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, Infante RE (2009) Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 137:1213–1224

    Article  PubMed  Google Scholar 

  • Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang P-W, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    Article  PubMed  CAS  Google Scholar 

  • Li H, Repa JJ, Valasek MA, Beltroy EP, Turley SD, German DC, Dietschy JM (2005) Molecular, anatomical, and biochemical events associated with neurodegeneration in mice with Niemann–Pick type C disease. J Neuropathol Exp Neurol 64:323–333

    PubMed  CAS  Google Scholar 

  • Li H, Turley SD, Liu B, Repa JJ, Dietschy JM (2010) GM2/GD2 and GM3 gangliosides have no effect on cellular cholesterol pools or turnover in normal or NPC1 mice. J Lipid Res 49:1816–1828

    Article  CAS  Google Scholar 

  • Link CD, Fonte V, Hiester B, Yerg J, Ferguson J, Csontos S, Silverman MA, Stein GH (2006) Conversion of green fluorescent protein into a toxic, aggregation-prone protein by C-terminal addition of a short peptide. J Biol Chem 281:1808–1816

    Article  PubMed  CAS  Google Scholar 

  • Liou HL, Dixit SS, Xu S, Tint GS, Stock AM, Lobel P (2006) NPC2, the protein deficient in Niemann–Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J Biol Chem 281:36710–36723

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wu YP, Wada R, Neufeld EB, Mullin KA, Howard AC, Pentchev PG, Vanier MT, Suzuki K, Proia RL (2000) Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann–Pick C disease mouse. Hum Mol Genet 9:1087–1092

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Turley SD, Burns DK, Miller AM, Repa JJ, Dietschy JM (2009) Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1−/− mouse. Proc Natl Acad Sci USA 106:2377–2382

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA, Pentchev PG, Pavan WJ (1997) Murine model of Niemann–Pick C disease: mutation in a cholesterol homeostasis gene. Science 277:232–235

    Article  PubMed  CAS  Google Scholar 

  • Loftus SK, Erickson RP, Walkley SU, Bryant MA, Incao A, Heidenreich RA, Pavan WJ (2002) Rescue of neurodegeneration in Niemann–Pick C mice by a prion-promoter-driven Npc1 cDNA transgene. Hum Mol Genet 11:3107–3114

    Article  PubMed  CAS  Google Scholar 

  • Lopez ME, Klein AD, Dimbil UJ, Scott MP (2011) Anatomically defined neuron-based rescue of neurodegenerative Niemann–Pick type C disorder. J Neurosci 31:4367–4378

    Article  PubMed  CAS  Google Scholar 

  • Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357

    Article  PubMed  CAS  Google Scholar 

  • Maue RA, Burgess RW, Wang B, Wooley CM, Seburn KL, Vanier MT, Rogers MA, Chang CC, Chang T-Y, Harris BT, Graber DJ, Penatti CAA, Porter DM, Szwergold BS, Henderson LP, Totenhagen JW, Trouard TP, Borbon IA, Erickson RP (2012) A novel mouse model of Niemann–Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations. Hum Mol Genet 21:730–750

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki S, Mitsuoka S, Sakiyama T, Kitagawa T (1982) Sphingomyelinosis, a new mutation in the mouse: a model of Niemann–Pick disease in humans. J Hered 73:257–263

    PubMed  CAS  Google Scholar 

  • Miyawaki S, Mitsuoka S, Sakiyama T, Kitagawa T (1983) Time course of hepatic lipids accumulation in a strain of mice with an inherited deficiency of sphingomyelinase. J Hered 74:465–468

    PubMed  CAS  Google Scholar 

  • Miyawaki S, Yoshida H, Mitsuoka S, Enomoto H, Ikehara S (1986) A mouse model for Niemann–Pick disease. Influence of genetic background on disease expression in spm/spm mice. J Hered 77:379–384

    PubMed  CAS  Google Scholar 

  • Mutka AL, Lusa S, Linder MD, Jokitalo E, Kopra O, Jauhiainen M, Ikonen E (2004) Secretion of sterols and the NPC2 protein from primary astrocytes. J Biol Chem 279:48654–48662

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    Article  PubMed  CAS  Google Scholar 

  • Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R, Jadot M, Lobel P (2000) Identification of HE1 as the second gene of Niemann–Pick C disease. Science 290:2298–2301

    Article  PubMed  CAS  Google Scholar 

  • Neufeld EB, Cooney AM, Pitha J, Dawidowicz EA, Dwyer NK, Pentchev PG, Blanchette-Mackie EJ (1996) Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem 271:21604–21613

    Article  PubMed  CAS  Google Scholar 

  • Neufeld EB, Wastney M, Patel S, Suresh S, Cooney AM, Dwyer NK, Roff CF, Ohno K, Morris JA, Carstea ED, Incardona JP, Strauss JF 3rd, Vanier MT, Patterson MC, Brady RO, Pentchev PG, Blanchette-Mackie EJ (1999) The Niemann–Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J Biol Chem 274:9627–9635

    Article  PubMed  CAS  Google Scholar 

  • Nielsen GK, Dagnaes-Hansen F, Holm IE, Meaney S, Symula D, Andersen NT, Heegaard CW (2011) Protein replacement therapy partially corrects the cholesterol-storage phenotype in a mouse model of Niemann–Pick type C2 disease. PLoS One 6(11):e27287. doi:10.1371/journal.pone.0027287

    Article  PubMed  CAS  Google Scholar 

  • Okamura N, Kiuchi S, Tamba M, Kashima T, Hiramoto S, Baba T, Dacheux F, Dacheux J-L, Sugita Y, Jin Y-Z (1999) A porcine homolog of the major secretory protein of human epididymis, HE1, specifically binds cholesterol. Biochim Biophys Acta 1438:377–387

    Article  PubMed  CAS  Google Scholar 

  • Ong WY, Kumar U, Switzer RC, Sidhu A, Suresh G, Hu CY, Patel SC (2001) Neurodegeneration in Niemann–Pick type C disease mice. Exp Brain Res 141:218–231

    Article  PubMed  CAS  Google Scholar 

  • Park WD, O’Brien JF, Lundquist PA, Kraft DL, Vockley CW, Karnes PS, Patterson MC, Snow K (2003) Identification of 58 novel mutations in Niemann–Pick disease type C: correlation with biochemical phenotype and importance of PTC1-like domains in NPC1. Hum Mutat 22:313–325

    Article  PubMed  CAS  Google Scholar 

  • Patel SC, Asotra K, Patel YC, McConathy WJ, Patel RC, Suresh S (1995) Astrocytes synthesize and secrete the lipophilic ligand carrier apolipoprotein D. Neuroreport 6:653–657

    Article  PubMed  CAS  Google Scholar 

  • Patel SC, Suresh S, Kumar U, Hu CY, Cooney A, Blanchette-Mackie EJ, Neufeld EB, Patel RC, Brady RO, Patel YC, Pentchev PG, Ong WY (1999) Localization of Niemann–Pick C1 protein in astrocytes: implications for neuronal degeneration in Niemann–Pick type C disease. Proc Natl Acad Sci USA 96:1657–1662

    Article  PubMed  CAS  Google Scholar 

  • Patterson MC, Vanier MT, Suzuki K, Morris JA, Carstea E, Neufeld EB, Blanchette-Mackie JE, Pentchev PG (2001) Niemann–Pick disease C: A lipid trafficking disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, vol III, 8th edn. McGraw-Hill, New York, pp 3611–3633

    Google Scholar 

  • Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE (2007) Miglustat for treatment of Niemann–Pick C disease: a randomised controlled study. Lancet Neurol 6:765–772

    Article  PubMed  CAS  Google Scholar 

  • Peake KB, Campenot RB, Vance DE, Vance JE (2011) Niemann–Pick Type C1 deficiency in microglia does not cause neuron death in vitro. Biochim Biophys Acta 1812:1121–1129

    Article  PubMed  CAS  Google Scholar 

  • Pentchev PG, Gal AE, Booth AD, Omodeo-Sale F, Fouks J, Neumeyer BA, Quirk JM, Dawson G, Brady RO (1980) A lysosomal storage disorder in mice characterized by a dual deficiency of sphingomyelinase and glucocerebrosidase. Biochim Biophys Acta 619:669–679

    Article  PubMed  CAS  Google Scholar 

  • Pentchev PG, Boothe AD, Kruth HS, Weintroub H, Stivers J, Brady RO (1984) A genetic storage disorder in BALB/C mice with a metabolic block in esterification of exogenous cholesterol. J Biol Chem 259:5784–5791

    PubMed  CAS  Google Scholar 

  • Pentchev PG, Comly ME, Kruth HS, Patel S, Proestel M, Weintroub H (1986) The cholesterol storage disorder of the mutant BALB/c mouse. A primary genetic lesion closely linked to defective esterification of exogenously derived cholesterol and its relationship to human type C Niemann–Pick disease. J Biol Chem 261:2772–2777

    PubMed  CAS  Google Scholar 

  • Pfrieger FW (2003) Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes? Bioessays 25:72–78

    Article  PubMed  CAS  Google Scholar 

  • Prasad A, Fischer WA, Maue RA, Henderson LP (2000) Regional and developmental expression of the Npc1 mRNA in the mouse brain. J Neurochem 75:1250–1257

    Article  PubMed  CAS  Google Scholar 

  • Siegel DA, Walkley SU (1994) Growth of ectopic dendrites on cortical pyramidal neurons in neuronal storage diseases correlates with abnormal accumulation of GM2 ganglioside. J Neurochem 62:1852–1862

    Article  PubMed  CAS  Google Scholar 

  • Sleat DE, Wiseman JA, El-Banna M, Price SM, Verot L, Shen MM, Tint GS, Vanier MT, Walkley SU, Lobel P (2004) Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci USA 101:5886–5891

    Article  PubMed  CAS  Google Scholar 

  • Takikita S, Fukuda T, Mohri I, Yagi T, Suzuki K (2004) Perturbed myelination process of premyelinating oligodendrocyte in Niemann–Pick type C mouse. J Neuropathol Exp Neurol 63:660–673

    PubMed  Google Scholar 

  • Tanaka J, Nakamura H, Miyawaki S (1988) Cerebellar involvement in murine sphingomyelinosis: a new model of Niemann–Pick disease. J Neuropathol Exp Neurol 47:291–300

    Article  PubMed  CAS  Google Scholar 

  • Thompson DO (1997) Cyclodextrins—enabling excipients: their present and future use in pharmaceuticals. Crit Rev Ther Drug Carrier Syst 14:1–104

    Article  PubMed  CAS  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701

    Article  PubMed  CAS  Google Scholar 

  • Vanier MT (2010) Niemann–Pick disease type C. Orphanet J Rare Dis 5:16

    Article  PubMed  Google Scholar 

  • Vanier MT, Duthel S, Rodriguez-Lafrasse C, Pentchev P, Carstea ED (1996) Genetic heterogeneity in Niemann–Pick C disease: a study using somatic cell hybridization and linkage analysis. Am J Hum Genet 58:118–125

    PubMed  CAS  Google Scholar 

  • Vázquez MC, Balboa E, Alvarez AR, Zanlungo S (2012) Oxidative stress: a pathogenic mechanism for Niemann–Pick type C disease. Oxid Med Cell Longev. doi:10.1155/2012/205713

  • Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 285:20423–20427

    Article  PubMed  CAS  Google Scholar 

  • Võikar V, Rauvala H, Ikonen E (2002) Cognitive deficit and development of motor impairment in a mouse model of Niemann–Pick type C disease. Behav Brain Res 132:1–10

    Article  PubMed  Google Scholar 

  • Waalkens-Berendsen DH, Smits van Prooije AE, Bär A (1998) Embryotoxicity and teratogenicity study with gamma-cyclodextrin in rabbits. Regul Toxicol Pharmacol 27:172–177

    Article  PubMed  CAS  Google Scholar 

  • Walkley SU (2004) Secondary accumulation of gangliosides in lysosomal storage disorders. Semin Cell Dev Biol 15:433–444

    Article  PubMed  CAS  Google Scholar 

  • Walkley SU, Suzuki K (2004) Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim Biophys Acta 1685:48–62

    Article  PubMed  CAS  Google Scholar 

  • Xie C, Burns DK, Turley SD, Dietschy JM (2000) Cholesterol is sequestered in the brains of mice with Niemann–Pick type C disease but turnover is increased. J Neuropathol Exp Neurol 59:1106–1117

    PubMed  CAS  Google Scholar 

  • Xie C, Lund EG, Turley SD, Russell DW, Dietschy JM (2003) Quantitation of two pathways for cholesterol excretion from the brain in normal mice and mice with neurodegeneration. J Lipid Res 44:1780–1789

    Article  PubMed  CAS  Google Scholar 

  • Xie C, Richardson JA, Turley SD, Dietschy JM (2006) Cholesterol substrate pools and steroid hormone levels are normal in the face of mutational inactivation of NPC1 protein. J Lipid Res 47:953–963

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Brown MS, Shelton JM, Richardson JA, Goldstein JL, Liang G (2011) Amino acid substitution in NPC1 that abolishes cholesterol binding reproduces phenotype of complete NPC1 deficiency in mice. Proc Natl Acad Sci USA 108:15330–15335

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Cleaveland ES, Nagle JW, French S, Yaswen L, Ohshima T, Brady RO, Pentchev PG, Kulkarni AB (1996) Molecular cloning of the mouse apolipoprotein D gene and its upregulated expression in Niemann–Pick disease type C mouse model. DNA Cell Biol 15:873–882

    Article  PubMed  CAS  Google Scholar 

  • Zervas M, Dobrenis K, Walkley SU (2001) Neurons in Niemann–Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J Neuropathol Exp Neurol 60:49–64

    PubMed  CAS  Google Scholar 

  • Zhang J, Erickson RP (2000) A modifier of Niemann Pick C 1 maps to mouse chromosome 19. Mamm Genome 11:69–71

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Strnatka D, Donohue C, Hallows JL, Vincent I, Erickson RP (2008) Astrocyte-only Npc1 reduces neuronal cholesterol and triples life span of Npc1 −/− mice. J Neurosci Res 86:2848–2856

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Maria Teresa Fiorenza for the thoughtful comments, Ivan Borbon for the slight modifications of Fig. 2, and Nabeel Affara and members of his laboratory for their hospitality while this paper was written. Work reported from the author’s laboratory was supported by NIH 5RO1 EB000343-95 (PI, T. Trouard).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Erickson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erickson, R.P. Current controversies in Niemann–Pick C1 disease: steroids or gangliosides; neurons or neurons and glia. J Appl Genetics 54, 215–224 (2013). https://doi.org/10.1007/s13353-012-0130-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-012-0130-0

Keywords

Navigation