Skip to main content

Advertisement

Log in

Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases?

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Biofilm comprises a community of microorganisms which form on medical devices and can lead to various threatening infections. It is a major concern in various respiratory diseases like cystic fibrosis, chronic obstructive pulmonary disease, etc. The treatment strategies for such infections are difficult due to the resistance of the microflora existing in the biofilms against various antimicrobial agents, thus posing threats to the patient population. The present era witnesses the beginning of research to understand the biofilm physiology and the associated microfloral diversity by applying -omics approaches. There is very limited information about how the deposition of biofilm on the respiratory devices and lung itself affects the drug delivered, the delivery system, and other implications. The present mini review summarizes the basic introduction to the biofilms and its avoidance using various drug delivery systems with special emphasis on the respiratory diseases. Understanding the approaches, principles, and modes of drug delivery involved in preventing biofilm deposition will be of interest to both biological and formulation scientists, thereby opening avenues to explore the new vistas in biofilm research for identifying better treatments for pulmonary infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adair CG, Gorman SP, Feron BM, et al. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med. 1999;25(10):1072–6.

    Article  CAS  PubMed  Google Scholar 

  2. Solomon DH, Wobb J, Buttaro BA, Truant A, Soliman AM. Characterization of bacterial biofilms on tracheostomy tubes. Laryngoscope. 2009;119(8):1633–8.

    Article  PubMed  Google Scholar 

  3. Loo CY, Lee WH, Young PM, Cavaliere R, Whitchurch CB, Rohanizadeh R. Implications and emerging control strategies for ventilator-associated infections. Expert Rev Anti-Infect Ther. 2015;13(3):379–93.

    Article  CAS  PubMed  Google Scholar 

  4. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.

    Article  CAS  PubMed  Google Scholar 

  5. Smith AW. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev. 2005;57(10):1539–50.

    Article  CAS  PubMed  Google Scholar 

  6. Proal A. Understanding biofilms. Bacteriality—Exploring Chron Dis. 2008;26

  7. Blenkinsopp S, Costerton J. Understanding bacterial biofilms. Trends Biotechnol. 1991;9(1):138–43.

    Article  Google Scholar 

  8. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002; 8(9).

  9. Wilson M, Devine D. Medical implications of biofilms. Cambridge University Press; 2003.

  10. Ghannoum MA, O’Toole GA. Microbial biofilms Vol 229. Washington, DC: ASM Press; 2004.

    Google Scholar 

  11. Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Ann Rev Microbiol. 2003;57(1):677–701.

    Article  CAS  Google Scholar 

  12. Klinger-Strobel M, Lautenschläger C, Fischer D, et al. Aspects of pulmonary drug delivery strategies for infections in cystic fibrosis–where do we stand? Expert Opin Drug Deliv. 2015;12(8):1351–74.

    Article  CAS  PubMed  Google Scholar 

  13. Moran A, Annuk H. Recent advances in understanding biofilms of mucosae. Rev Environ Sci Biotechnol. 2003;2(2–4):121–40.

    Article  Google Scholar 

  14. Gomes-Filho IS, Passos JS, da Cruz SS. Respiratory disease and the role of oral bacteria. J Oral Microbiol. 2010;2

  15. Loera-Muro A, Ramírez-Castillo FY, Avelar-González FJ, Guerrero-Barrera AL. Porcine respiratory disease complex and biofilms. J Bacteriol Parasitol. 2015;6(6):1.

    Article  Google Scholar 

  16. Boisvert A-A, Cheng MP, Sheppard DC, Nguyen D. Microbial biofilms in pulmonary and critical care diseases. Ann Am Thorac Soc. 2016;13(9):1615–23.

    Article  PubMed  Google Scholar 

  17. Bjarnsholt T, Jensen PO, Fiandaca MJ, et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol. 2009;44(6):547–58.

    Article  PubMed  Google Scholar 

  18. Kłodzińska SN, Priemel PA, Rades T, Mørck NH. Inhalable antimicrobials for treatment of bacterial biofilm-associated sinusitis in cystic fibrosis patients: challenges and drug delivery approaches. Int J Mol Sci. 2016;17(10):1688.

    Article  PubMed Central  CAS  Google Scholar 

  19. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg E. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000;407(6805):762–4.

    Article  CAS  PubMed  Google Scholar 

  20. Hassett DJ, Borchers MT, Panos RJ. Chronic obstructive pulmonary disease (COPD): evaluation from clinical, immunological and bacterial pathogenesis perspectives. J Microbiol (Seoul, Korea). 2014;52(3):211–26.

    Google Scholar 

  21. Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect. 2003;5(13):1213–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi H. Airway biofilms: implications for pathogenesis and therapy of respiratory tract infections. Treat Respir Med. 2005;4(4):241–53.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y-CC, Post JC. Biofilms in pediatric respiratory and related infections. Curr Allergy Asthma Rep. 2009;9(6):449–55.

    Article  CAS  PubMed  Google Scholar 

  24. Marushko YV, Hyshchak T. Biofilm the formation in respiratory diseases. Influence of ambroxol on airway biofilms (literature review). CHILDS. Health. 2016;2(70):88–94.

    Google Scholar 

  25. Puig C, Domenech A, Garmendia J, et al. Increased biofilm formation by nontypeable Haemophilus influenzae isolates from patients with invasive disease or otitis media versus strains recovered from cases of respiratory infections. Appl Environ Microbiol. 2014;80(22):7088–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114–22.

    Article  CAS  PubMed  Google Scholar 

  27. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322–32.

    Article  PubMed  CAS  Google Scholar 

  28. Aparna MS, Yadav S. Biofilms: microbes and disease. Braz J Infect Dis. 2008;12(6):526–30.

    Article  CAS  PubMed  Google Scholar 

  29. Del Pozo JL, Rouse M, Patel R. Bioelectric effect and bacterial biofilms. A systematic review. Int J Artif Organs. 2008;31(9):786.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother. 1994;38(12):2803–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001;45(4):999–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mah T-FC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  33. Gilbert P, Hodgson A, Brown M. Influence of the environment on the properties of microorganisms grown in association with surfaces. Microbiological quality assurance: a guide towards relevance and reproducibility of inocula. Boca Raton, FL: CRC Press Inc; 1995. p. 61–82.

    Google Scholar 

  34. Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother. 1996;40(11):2517–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nichols W. Biofilms, antibiotics and penetration. Rev Med Microbiol. 1991;2:177–81.

    Google Scholar 

  36. Sutherland IW. The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol. 2001;9(5):222–7.

    Article  CAS  PubMed  Google Scholar 

  37. Cao B, Christophersen L, Kolpen M, et al. Diffusion retardation by binding of tobramycin in an alginate biofilm model. PLoS One. 2016;11(4):e0153616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Giwercman B, Jensen E, Høiby N, Kharazmi A, Costerton J. Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm. Antimicrob Agents Chemother. 1991;35(5):1008–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ciofu O, Tolker-Nielsen T, Jensen PO, Wang H, Hoiby N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. 2015;85:7–23.

    Article  CAS  PubMed  Google Scholar 

  40. Walters 3rd MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003;47(1):317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother. 2004;48(7):2659–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kolpen M, Mousavi N, Sams T, et al. Reinforcement of the bactericidal effect of ciprofloxacin on Pseudomonas aeruginosa biofilm by hyperbaric oxygen treatment. Int J Antimicrob Agents. 2016;47(2):163–7.

    Article  CAS  PubMed  Google Scholar 

  43. De Kievit TR, Parkins MD, Gillis RJ, et al. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2001;45(6):1761–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Worlitzsch D, Tarran R, Ulrich M, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest. 2002;109(3):317–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kolpen M, Hansen CR, Bjarnsholt T, et al. Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax. 2010;65(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  46. Kolpen M, Bjarnsholt T, Moser C, et al. Nitric oxide production by polymorphonuclear leucocytes in infected cystic fibrosis sputum consumes oxygen. Clin Exp Immunol. 2014;177(1):310–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cowley ES, Kopf SH, LaRiviere A, Ziebis W, Newman DK. Pediatric cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely reduced due to hydrogen sulfide formation. mBio. 2015; 6(4).

  48. Hassett DJ, Cuppoletti J, Trapnell B, et al. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Adv Drug Deliv Rev. 2002;54(11):1425–43.

    Article  CAS  PubMed  Google Scholar 

  49. Høiby N. Recent advances in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. BMC medicine. 2011;9(1):1.

    Article  CAS  Google Scholar 

  50. Kolpen M, Kuhl M, Bjarnsholt T, et al. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. PLoS One. 2014;9(1):e84353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Byron PR. Drug delivery devices. Proc Am Thorac Soc. 2004;1(4):321–8.

    Article  CAS  PubMed  Google Scholar 

  52. Son Y-J, Longest PW, Hindle M. Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: effect of spray drying process conditions on aerosol performance. Int J Pharm. 2013;443(1):137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Timsina M, Martin G, Marriott C, Ganderton D, Yianneskis M. Drug delivery to the respiratory tract using dry powder inhalers. Int J Pharm. 1994;101(1–2):1–13.

    Article  CAS  Google Scholar 

  54. Newman S, Busse W. Evolution of dry powder inhaler design, formulation, and performance. Respir Med. 2002;96(5):293–304.

    Article  CAS  PubMed  Google Scholar 

  55. Dua K, Hansbro NG, Foster PS, et al. Drug Deliv. and Transl. Res. (2016). doi:10.1007/s13346-016-0343-6.

  56. Prat C, Lacoma A. Bacteria in the respiratory tract-how to treat? Or do not treat? Int J Infect Dis. 2016;51:113–22.

    Article  PubMed  Google Scholar 

  57. Blasi F, Page C, Rossolini GM, et al. The effect of N-acetylcysteine on biofilms: implications for the treatment of respiratory tract infections. Respir Med. 2016;117:190–7.

    Article  PubMed  Google Scholar 

  58. Zhou QT, Sun SP, Chan JG, et al. Novel inhaled combination powder containing amorphous colistin and crystalline rifapentine with enhanced antimicrobial activities against planktonic cells and biofilm of Pseudomonas aeruginosa for respiratory infections. Mol Pharm. 2015;12(8):2594–603.

    Article  CAS  PubMed  Google Scholar 

  59. Luca V, Stringaro A, Colone M, Pini A, Mangoni ML. Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell Mol Life Sci. 2013;70(15):2773–86.

    Article  CAS  PubMed  Google Scholar 

  60. Rediske AM, Roeder BL, Nelson JL, et al. Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob Agents Chemother. 2000;44(3):771–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carmen J, Roeder B, Nelson J, et al. Ultrasonically enhanced vancomycin activity against Staphylococcus epidermidis biofilms in vivo. J Biomater Appl. 2004;18(4):237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pitt WG, Ross SA. Ultrasound increases the rate of bacterial cell growth. Biotechnol Prog. 2003;19(3):1038–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Carmen JC, Nelson JL, Beckstead BL, et al. Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli. J Infect Chemother. 2004;10(4):193–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. de Melo W, Avci P, de Oliveira M, et al. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Rev Anti-Infect Ther. 2013;11(7):669–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. O’Neill JF, Hope CK, Wilson M. Oral bacteria in multi-species biofilms can be killed by red light in the presence of toluidine blue. Lasers Surg Med. 2002;31(2):86–90.

    Article  PubMed  Google Scholar 

  66. Jones MN, Song Y-H, Kaszuba M, Reboiras MD. The interaction of phospholipid liposomes with bacteria and their use in the delivery of bactericides. Journal of drug targeting. 2009.

  67. Kim H-J, Gias ELM, Jones MN. The adsorption of cationic liposomes to Staphylococcus aureus biofilms. Colloids Surf A Physicochem Eng Asp. 1999;149(1):561–70.

    Article  CAS  Google Scholar 

  68. Catuogno C, Jones MN. The antibacterial properties of solid supported liposomes on Streptococcus oralis biofilms. Int J Pharm. 2003;257(1):125–40.

    Article  CAS  PubMed  Google Scholar 

  69. Ahmed K, Muiruri PW, Jones GH, Scott MJ, Jones MN. The effect of grafted poly (ethylene glycol) on the electrophoretic properties of phospholipid liposomes and their adsorption to bacterial biofilms. Colloids Surf A Physicochem Eng Asp. 2001;194(1):287–96.

    Article  CAS  Google Scholar 

  70. Robinson AM, Bannister M, Creeth JE, Jones MN. The interaction of phospholipid liposomes with mixed bacterial biofilms and their use in the delivery of bactericide. Colloids Surf A Physicochem Eng Asp. 2001;186(1):43–53.

    Article  CAS  Google Scholar 

  71. Hill KJ, Kaszuba M, Creeth JE, Jones MN. Reactive liposomes encapsulating a glucose oxidase-peroxidase system with antibacterial activity. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1997;1326(1):37–46.

    Article  CAS  Google Scholar 

  72. Wong JP, Yang H, Blasetti KL, Schnell G, Conley J, Schofield LN. Liposome delivery of ciprofloxacin against intracellular Francisella tularensis infection. J Control Release. 2003;92(3):265–73.

    Article  CAS  PubMed  Google Scholar 

  73. Ellbogen MH, Olsen KM, Gentry-Nielsen MJ, Preheim LC. Efficacy of liposome-encapsulated ciprofloxacin compared with ciprofloxacin and ceftriaxone in a rat model of pneumococcal pneumonia. J Antimicrob Chemother. 2003;51(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  74. Bakker-Woudenberg IA, Schiffelers RM, ten Kate MT, et al. Targeting of antibiotics in bacterial infections using pegylated long-circulating liposomes. J Liposome Res. 2000;10(4):513–21.

    Article  CAS  Google Scholar 

  75. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96.

    Article  CAS  PubMed  Google Scholar 

  76. Freiberg S, Zhu X. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  77. Yenice I, Çalış S, Kaş H, Özalp M, Ekizoğlu M, Hıncal A. Biodegradable implantable teicoplanin beads for the treatment of bone infections. Int J Pharm. 2002;242(1):271–5.

    Article  CAS  PubMed  Google Scholar 

  78. Gursel I, Yagmurlu F, Korkusuz F, Hasirci V. In vitro antibiotic release from poly (3-hydroxybutyrate-co-3-hydroxyvalerate) rods. J Microencapsul. 2002;19(2):153–64.

    Article  CAS  Google Scholar 

  79. Schlapp M, Friess W. Collagen/PLGA microparticle composites for local controlled delivery of gentamicin. J Pharm Sci. 2003;92(11):2145–51.

    Article  CAS  PubMed  Google Scholar 

  80. Kelly H, Deasy P, Ziaka E, Claffey N. Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int J Pharm. 2004;274(1):167–83.

    Article  CAS  PubMed  Google Scholar 

  81. Riordan OTG. Inhaled antimicrobial therapy: from cystic fibrosis to the flu. Respir Care. 2000;45(7):836–45.

    Google Scholar 

  82. Klepser ME. Role of nebulized antibiotics for the treatment of respiratory infections. Curr Opin Infect Dis. 2004;17(2):109–12.

    Article  CAS  PubMed  Google Scholar 

  83. Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N Engl J Med. 1999;340(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  84. Smith A. Inhaled antibiotic therapy: what drug? What dose? What regimen? What formulation? J Cyst Fibros. 2002;1:189–93.

    Article  CAS  PubMed  Google Scholar 

  85. Smaldone GC. Aerosolized antibiotics in mechanically ventilated patients. Respir Care. 2004;49(6):635–9.

    PubMed  Google Scholar 

  86. Diot P, Dequin P, Rivoire B, et al. Aerosols and anti-infectious agents. J Aerosol Med. 2001;14(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  87. Tanihara M, Suzuki Y, Nishimura Y, Suzuki K, Kakimaru Y, Fukunishi Y. A novel microbial infection-responsive drug release system. J Pharm Sci. 1999;88(5):510–4.

    Article  CAS  PubMed  Google Scholar 

  88. Kuhn D, George T, Chandra J, Mukherjee P, Ghannoum M. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 2002;46(6):1773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Polaschegg H-D. Taurolidine formulations and delivery: therapeutic treatments and antimicrobial protection against bacterial biofilm formation. Google Patents; 2005.

  90. Alpkvist E. Modelling and simulation of heterogeneous biofilm growth using a continuum approach. Univ.; 2005.

  91. Klapper I, Dockery J. Finger formation in biofilm layers. SIAM J Appl Math. 2002;62(3):853–69.

    Article  Google Scholar 

  92. Eberl HJ, Parker DF, Van Loosdrecht M. A new deterministic spatio-temporal continuum model for biofilm development. Comput Math Methods Med. 2001;3(3):161–75.

    Google Scholar 

  93. Picioreanu C, van Loosdrecht M, Heijnen J. Multidimensional modeling of biofilm structure. Delft University of Technology, Faculty of. Applied Sciences; 1999.

  94. Eberl H. Mathematical modeling of biofilms. Vol 18: IWA publishing; 2006.

  95. Anguige K, King J, Ward J. Modelling antibiotic-and anti-quorum sensing treatment of a spatially-structured Pseudomonas aeruginosa population. J Math Biol. 2005;51(5):557–94.

    Article  CAS  PubMed  Google Scholar 

  96. Cogan N, Cortez R, Fauci L. Modeling physiological resistance in bacterial biofilms. Bull Math Biol. 2005;67(4):831–53.

    Article  CAS  PubMed  Google Scholar 

  97. Dodds MG, Grobe KJ, Stewart PS. Modeling biofilm antimicrobial resistance. Biotechnol Bioeng. 2000;68(4):456–65.

    Article  CAS  PubMed  Google Scholar 

  98. Hunt S, Hamilton M, Stewart P. A 3D model of antimicrobial action on biofilms. Water Sci Technol. 2005;52(7):143–8.

    CAS  Google Scholar 

  99. Efendiev M, Demaret L, Lasser R, Eberl H. Analysis and simulation of a meso-scale model of diffusive resistance of bacterial biofilms to penetration of antibiotics. Adv. Math. Sci. Appl. 2008; 18(2).

  100. Roberts ME, Stewart PS. Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation. Antimicrob Agents Chemother. 2004;48(1):48–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Khassehkhan H, Eberl HJ. Modeling and simulation of a bacterial biofilm that is controlled by pH and protonated lactic acids. Computational and Mathematical Methods in Medicine. 2008; 9(1).

  102. Cipolla D, Blanchard J, Gonda I. Development of liposomal ciprofloxacin to treat lung infections. Pharmaceutics. 2016;8(1):6.

    Article  PubMed Central  Google Scholar 

  103. Halwani M, Yebio B, Suntres Z, Alipour M, Azghani A, Omri A. Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J Antimicrob Chemother. 2008;62(6):1291–7.

    Article  CAS  PubMed  Google Scholar 

  104. Alhajlan M, Alhariri M, Omri A. Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother. 2013;57(6):2694–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sans-Serramitjana E, Fusté E, Martínez-Garriga B, et al. Killing effect of nanoencapsulated colistin sulfate on Pseudomonas aeruginosa from cystic fibrosis patients. Journal of Cystic Fibrosis. 2015.

  106. Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun. 2014;453(2):254–67.

    Article  CAS  PubMed  Google Scholar 

  107. Tegos PG, Haynes M, Jacob Strouse J, et al. Microbial efflux pump inhibition: tactics and strategies. Curr Pharm Des. 2011;17(13):1291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Park S-C, Park Y, Hahm K-S. The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci. 2011;12(9):5971–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu H, Moser C, Wang H-Z, Høiby N, Song Z-J. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015;7(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  110. Römling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012;272(6):541–61.

    Article  PubMed  CAS  Google Scholar 

  111. Blackledge MS, Worthington RJ, Melander C. Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol. 2013;13(5):699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest. 2003;112(10):1466–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kaplan JB. Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs. 2009;32(9):545–54.

    CAS  PubMed  Google Scholar 

  114. Sulemankhil I, Ganopolsky JG, Dieni CA, Dan AF, Jones ML, Prakash S. Prevention and treatment of virulent bacterial biofilms with an enzymatic nitric oxide-releasing dressing. Antimicrob Agents Chemother. 2012;56(12):6095–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Markowska K, Grudniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013;60(4):523–30.

    PubMed  Google Scholar 

  116. Habimana O, Steenkeste K, Fontaine-Aupart M-P, Bellon-Fontaine M-N, Kulakauskas S, Briandet R. Diffusion of nanoparticles in biofilms is altered by bacterial cell wall hydrophobicity. Appl Environ Microbiol. 2011;77(1):367–8.

    Article  CAS  PubMed  Google Scholar 

  117. Messiaen A-S, Forier K, Nelis H, Braeckmans K, Coenye T. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms. PLoS One. 2013;8(11):e79220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Merchant Z, Buckton G, Taylor MGK, et al. A new era of pulmonary delivery of nano-antimicrobial therapeutics to treat chronic pulmonary infections. Curr Pharm Des. 2016;22(17):2577–98.

    Article  CAS  PubMed  Google Scholar 

  119. Jones MN. Use of liposomes to deliver bactericides to bacterial biofilms. Methods Enzymol. 2005;391:211–28.

    Article  CAS  PubMed  Google Scholar 

  120. Dong D, Thomas N, Thierry B, Vreugde S, Prestidge CA, Wormald P-J. Distribution and inhibition of liposomes on Staphylococcus aureus and Pseudomonas aeruginosa biofilm. PLoS One. 2015;10(6):e0131806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Rukavina Z, Vanić Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics. 2016;8(2):18.

    Article  PubMed Central  Google Scholar 

  122. Meers P, Neville M, Malinin V, et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother. 2008;61(4):859–68.

    Article  CAS  PubMed  Google Scholar 

  123. Långmark J, Storey MV, Ashbolt NJ, Stenström T-A. Accumulation and fate of microorganisms and microspheres in biofilms formed in a pilot-scale water distribution system. Appl Environ Microbiol. 2005;71(2):706–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Song X, Yaskell T, Klepac-Ceraj V, Lynch MC, Soukos NS. Antimicrobial action of minocycline microspheres versus 810-nm diode laser on human dental plaque microcosm biofilms. J Periodontol. 2014;85(2):335–42.

    Article  CAS  PubMed  Google Scholar 

  125. Finnegan S, Percival SL. Clinical and antibiofilm efficacy of antimicrobial hydrogels. Adv Wound Care. 2015;4(7):398–406.

    Article  Google Scholar 

  126. Lee AL, Ng VW, Wang W, Hedrick JL, Yang YY. Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication. Biomaterials. 2013;34(38):10278–86.

    Article  CAS  PubMed  Google Scholar 

  127. Hellriegel J, Günther S, Kampen I, Albero AB, Kwade A. A biomimetic gellan-based hydrogel as a physicochemical biofilm model. Journal of Biomaterials and. Nanobiotechnology. 2014; 2014.

  128. Chen F, Rice KC, Liu X-M, Reinhardt RA, Bayles KW, Wang D. Triclosan-loaded tooth-binding micelles for prevention and treatment of dental biofilm. Pharm Res. 2010;27(11):2356–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu Y, Busscher HJ, Zhao B, et al. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano. 2016;10(4):4779–89.

    Article  CAS  PubMed  Google Scholar 

  130. Albuquerque MT, Ryan SJ, Münchow EA, et al. Antimicrobial effects of novel triple antibiotic paste–mimic scaffolds on Actinomyces naeslundii biofilm. J Endod. 2015;41(8):1337–43.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Cao X, Zhao L, Song Z-B, Zhang X-Z, Qin J-Q. The influence of the alignment of electrospun fibrous scaffolds on the biological behavior of RSC96 cells. J Biomater Tissue Eng. 2014;4(6):488–91.

    Article  CAS  Google Scholar 

  132. Romero D, Vlamakis H, Losick R, Kolter R. Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly. J Bacteriol. 2014;196(8):1505–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Gilbert P, Jones M, Allison D, Heys S, Maira T, Wood P. The use of poloxamer hydrogels for the assessment of biofilm susceptibility towards biocide treatments. J Appl Microbiol. 1998;85(6):985–90.

    Article  CAS  PubMed  Google Scholar 

  134. Zhang X, Lee S, Liu Y, et al. Anion-activated, thermoreversible gelation system for the capture, release, and visual monitoring of CO2. Scientific reports. 2014; 4.

  135. Ré A, Ferreira M, Freitas O, Aires C. Local antibiotic delivery in periodontitis: drug release and its effect on supragingival biofilms. Biofouling. 2016;32(9):1061–6.

    Article  PubMed  CAS  Google Scholar 

  136. Ramanathan K. Prevention and treatment of biofilms by hybrid-and nanotechnologies. Int J Nanomedicine. 2013;8:2809–19.

    Google Scholar 

  137. Thomas EBS, J Fiegel. Development of a dry powder aerosol for the dispersion and eradication of respiratory biofilms. Proceedings of the American Thoracic Society, AIChE Annual Meeting. 2008.

  138. Cheow WS, Chang MW, Hadinoto K. Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharm Res. 2010;27(8):1597–609.

    Article  CAS  PubMed  Google Scholar 

  139. Loo C-Y, Rohanizadeh R, Young PM, et al. Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J Agric Food Chem. 2015;64(12):2513–22.

    Article  PubMed  CAS  Google Scholar 

  140. Singla S, Harjai K, Katare OP, Chhibber S. Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS One. 2016;11(4):e0153777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Lagacé J, Dubreuil M, Montplaisir S. Liposome-encapsulated antibiotics: preparation, drug release and antimicrobial activity against Pseudomonas aeruginosa. J Microencapsul. 1991;8(1):53–61.

    Article  PubMed  Google Scholar 

  142. Pilcer G, Sebti T, Amighi K. Formulation and characterization of lipid-coated tobramycin particles for dry powder inhalation. Pharm Res. 2006;23(5):931–40.

    Article  CAS  PubMed  Google Scholar 

  143. Rukholm G, Mugabe C, Azghani AO, Omri A. Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time–kill study. Int J Antimicrob Agents. 2006;27(3):247–52.

    Article  CAS  PubMed  Google Scholar 

  144. Sweeney LG, Wang Z, Loebenberg R, Wong JP, Lange CF, Finlay WH. Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery. Int J Pharm. 2005;305(1):180–5.

    Article  CAS  PubMed  Google Scholar 

  145. Ventura CA, Tommasini S, Crupi E, et al. Chitosan microspheres for intrapulmonary administration of moxifloxacin: interaction with biomembrane models and in vitro permeation studies. Eur J Pharm Biopharm. 2008;68(2):235–44.

    Article  CAS  PubMed  Google Scholar 

  146. McAllister S, Alpar H, Brown M. Antimicrobial properties of liposomal polymyxin B. J Antimicrob Chemother. 1999;43(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  147. Wallace SJ, Li J, Nation RL, Prankerd RJ, Boyd BJ. Interaction of colistin and colistin methanesulfonate with liposomes: colloidal aspects and implications for formulation. J Pharm Sci. 2012;101(9):3347–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano. 2012;6(5):4279–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shah SR, Henslee AM, Spicer PP, et al. Effects of antibiotic physicochemical properties on their release kinetics from biodegradable polymer microparticles. Pharm Res. 2014;31(12):3379–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Verkaik MJ, Busscher HJ, Jager D, Slomp AM, Abbas F, van der Mei HC. Efficacy of natural antimicrobials in toothpaste formulations against oral biofilms in vitro. J Dent. 2011;39(3):218–24.

    Article  CAS  PubMed  Google Scholar 

  151. Khassehkhan H, Eberl HJ. Modeling and simulation of a bacterial biofilm that is controlled by pH and protonated lactic acids. Comput Math Methods Med. 2008;9(1):47–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kamal Dua or Philip M. Hansbro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dua, K., Shukla, S.D., Tekade, R.K. et al. Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases?. Drug Deliv. and Transl. Res. 7, 179–187 (2017). https://doi.org/10.1007/s13346-016-0349-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0349-0

Keywords

Navigation