Skip to main content
Log in

Biofilms in pediatric respiratory and related infections

  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Bacteria can grow as free-floating, planktonic bacteria or complex communities called biofilms. Biofilms promote bacterial growth and diversity and offer bacteria unique environments, including aerobic and anaerobic layers, that facilitate resistance to antimicrobial therapies. Respiratory and related structures provide ideal environments for the development of bacterial biofilms, which predispose patients to recurrent and chronic infections. Biofilms are important for the persistence of chronic rhinosinusitis, pulmonary infections in cystic fibrosis, chronic otitis media, and device-related infections. Antimicrobial therapy that is proven effective against planktonic bacteria is often insufficiently effective against the defenses of biofilms. Furthermore, biofilms modify themselves following exposure to antimicrobial therapy, thus developing increased resistance. Understanding the nature of biofilms in common pediatric infections is essential to comprehending the expected course of bacterial illness and identifying treatments that are most likely to be beneficial against more resistant biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Slora EJ, Thoma KA, Wasserman RC, et al.: Patient visits to a national practice-based research network: comparing pediatric research in office settings with the National Ambulatory Medical Care Survey. Pediatrics 2006, 118:e228–e234.

    Article  PubMed  Google Scholar 

  2. Von Linstow ML, Holst KK, Larsen K, et al.: Acute respiratory symptoms and general illness during the first year of life: a population-based birth cohort study. Pediatr Pulmonol 2008, 43:584–593.

    Article  Google Scholar 

  3. Asthma and Allergy Foundation of America: Allergy facts and figures. Available at http://www.aafa.org. Accessed July 2009.

  4. Mbarek C, Akrout A, Khamassi K, et al.: Recurrent upper respiratory tract infections in children and allergy. A crosssectional study of 100 cases [in French]. Tunis Med 2008, 86:358–361.

    PubMed  Google Scholar 

  5. Ceri H, Olson ME, Stremick C, et al.: The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999, 37:1771–1776.

    CAS  PubMed  Google Scholar 

  6. Post C, Stoodley P, Hall-Stoodley L, Erlich G: The role of biofilms in otolaryngologic infections. Curr Opin Otolaryngol Head Neck Surg 2004, 12:185–190.

    Article  PubMed  Google Scholar 

  7. Post JC, Hiller NL, Nistico L, et al.: The role of biofilms in otolaryngologic infections: update 2007. Curr Opin Otolaryngol Head Neck Surg 2007, 15:347–351.

    Article  PubMed  Google Scholar 

  8. Hassett DJ, Sutton MD, Schurr MJ, et al.: Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. Trends Microbiol 2009, 7:130–138.

    Article  Google Scholar 

  9. Slavin RG: The upper and lower airways: the epidemiological and pathophysiological connection. Allergy Asthma Proc 2008, 29:553–556.

    Article  PubMed  Google Scholar 

  10. Dixon AE: Rhinosinusitis and asthma: the missing link. Curr Opin Pulm Med 2009, 15:19–24.

    Article  PubMed  Google Scholar 

  11. Kania RE, Lamers GM, Vonk MJ, et al.: Characterization of mucosal biofilms on human adenoid tissues. Laryngoscope 2008, 118:128–134.

    Article  PubMed  Google Scholar 

  12. Galli J, Calò L, Ardito F, et al.: Bacterial biofilm identification in the rhinopharingeal mucosa of children with recurrent infection of the upper respiratory tract and otitis media. Pediatr Med Chir 2008, 30:31–34.

    CAS  PubMed  Google Scholar 

  13. Shin KS, Cho SH, Kim KR, et al.: The role of adenoids in pediatric rhinosinusitis. Int J Pediatr Otorhinolaryngol 2008, 72:1643–1650.

    Article  PubMed  Google Scholar 

  14. Zuliani G, Carron M, Gurrola J, et al.: Identification of adenoid biofilms in chronic rhinosinusitis. Int J Pediatr Otorhinolaryngol 2006, 70:1613–1617.

    Article  PubMed  Google Scholar 

  15. Coticchia J, Zuliani G, Coleman C, et al.: Biofilms surface area in the pediatric nasopharynx. Chronic rhinosinusitis vs obstructive sleep apnea. Arch Otolaryngol Head Neck Surg 2007, 133:110–114.

    Article  PubMed  Google Scholar 

  16. Chole RA, Faddis BT: Anatomical evidence of microbial biofilms in tonsillar tissues: a possible mechanism to explain chronicity. Arch Otolaryngol Head Neck Surg 2003, 129:634–636.

    Article  PubMed  Google Scholar 

  17. Hunsaker DH, Leid JG: The relationship of biofilms to chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg 2008, 16:237–241.

    Article  PubMed  Google Scholar 

  18. Sanderson AR, Leid JG, Hunsaker D: Bacterial biofilms on the sinus mucosa of human subjects with choric rhinosinusitis. Laryngoscope 2006, 116:1121–1126.

    Article  PubMed  Google Scholar 

  19. Zhang Z, Li YC, Han YH, et al.: Evidence of bacterial biofilms in chronic rhinosinusitis [in Chinese]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2008, 43:840–844.

    PubMed  Google Scholar 

  20. Psaltis AJ, Wormald PJ, Ha KR, Tan LW: Reduced levels of lactoferrin in biofilm-associated chronic rhinosinusitis. Laryngoscope 2008, 118:895–901.

    Article  CAS  PubMed  Google Scholar 

  21. Rosenfeld M, Gibson RL, McNamara S, et al.: Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol 2001, 32:356–366.

    Article  CAS  PubMed  Google Scholar 

  22. Staab D: Cystic fibrosis—therapeutic challenge in cystic fibrosis children. Eur J Endocrinol 2004, 151Suppl 1):S77–S80.

    Article  CAS  PubMed  Google Scholar 

  23. O’May CY, Reid DW, Kirov SM: Anaerobic culture conditions favor biofilm-like phenotypes in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. FEMS Immunol Med Microbiol 2006, 48:373–380.

    Article  PubMed  Google Scholar 

  24. Kirov SM, Webb JS, O’May CY, et al.: Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 2007, 153:3264–3274.

    Article  CAS  PubMed  Google Scholar 

  25. Reid DW, Anderson GJ, Lamont IL: Cystic fibrosis: ironing out the problem of infection? Am J Physiol Lung Cell Mol Physiol 2008, 295:L23–L24.

    Article  CAS  PubMed  Google Scholar 

  26. Marchisio P, Ghisalberti E, Fusi M, et al.: Paranasal sinuses and middle ear infections: what do they have in common? Pediatr Allergy Immunol 2007, 18(Suppl 8):31–34.

    Article  PubMed  Google Scholar 

  27. Oberman JP, Derkay CS: Posttympanostomy tube otorrhea. Am J Otolaryngol 2004, 25:110–117.

    Article  PubMed  Google Scholar 

  28. Chi DH, Hendley JO, French P, et al.: Nasopharyngeal reservoir of bacterial otitis media and sinusitis pathogens in adults during wellness and viral respiratory illness. Am J Rhinol 2003, 17:209–214.

    PubMed  Google Scholar 

  29. Kaieda S, Yano H, Okitsu N, et al.: Investigation about the homogeneity of nasopharyngeal microflora at the different location of nasopharynx of children with acute otitis media. Int J Pediatr Otorhinolaryngol 2005, 69:959–963.

    Article  PubMed  Google Scholar 

  30. Zielnik-Jurkiewicz B, Kolczynska M: Nasopharyngeal and middle ear flora in children with acute otitis media. Otolaryngol Pol 2005, 59:537–542.

    PubMed  Google Scholar 

  31. Hoa M, Syamal M, Sachdeva L, et al.: Demonstration of nasopharyngeal and middle ear mucosal biofilms in an animal model of acute otitis media. Ann Otol Rhinol Laryngol 2009, 118:292–298.

    PubMed  Google Scholar 

  32. Moriyama S, Hotomi M, Shimada J, et al.: Formation of biofilm by Haemophilus influenzae isolated from pediatric intractable otitis media. Auris Nasus Larynx 2009 Jan 7 (Epub ahead of print).

  33. Hall-Stoodley L, Hu FZ, Gieseke A, et al.: Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006, 296:202–211.

    Article  CAS  PubMed  Google Scholar 

  34. Barakate M, Beckenham E, Curotta J, Da Cruz M: Bacterial biofilm adherence to middle-ear ventilation tubes: scanning electron micrograph images and literature review. J Laryngol Otol 2007, 121:993–997.

    Article  CAS  PubMed  Google Scholar 

  35. Macassey E, Dawes P: Biofilms and their role in otorhinolaryngological disease. J Laryngol Otol 2008, 122:1273–1278.

    Article  CAS  PubMed  Google Scholar 

  36. Jain A, Agarwal A: Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. J Microbiol Methods 2009, 76:88–92.

    Article  CAS  PubMed  Google Scholar 

  37. Zur KB, Mandell DL, Gordon RE, et al.: Electron microscopic analysis of biofilm on endotracheal tubes removed from intubated neonates. Otolaryngol Head Neck Surg 2004, 130:407–414.

    Article  PubMed  Google Scholar 

  38. Cristobal R, Edmiston CE Jr, Runge-Samuelson CL, et al.: Fungal biofilm formation on cochlear implant hardware after antibiotic-induced fungal overgrowth within the middle ear. Pediatr Infect Dis J 2004, 23:774–778.

    Article  PubMed  Google Scholar 

  39. Keays T, Ferris W, Vandemheen KL, et al.: A retrospective analysis of biofilm antibiotic susceptibility testing: a better predictor of clinical response in cystic fibrosis exacerbations. J Cyst Fibros 2009, 8:122–127.

    Article  CAS  PubMed  Google Scholar 

  40. Wallwork B, Coman W, Mackay-Sim A, et al.: Controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope 2006, 116:189–193.

    Article  CAS  PubMed  Google Scholar 

  41. Tateda K, Ishii Y, Kimura S, et al.: Suppression of Pseudomonas aeruginosa quorum-sensing systems by macrolides: a promising strategy or an Oriental mystery? J Infect Chemother 2007, 13:357–367.

    Article  CAS  PubMed  Google Scholar 

  42. Skindersoe M, Alhede M, Phipps R, et al.: Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008, 52:3648–3663.

    Article  CAS  PubMed  Google Scholar 

  43. Mulet X, Maciá MD, Mena A, et al.: Azithromycin in Pseudomonas aeruginosa biofilms: bactericidal activity and selection of nfxB mutants. Antimicrob Agents Chemother 2009, 53:1552–1560.

    Article  CAS  PubMed  Google Scholar 

  44. Desrosiers M, Myntti M, James G: Methods for removing bacterial biofilms: in vitro study using clinical chronic rhinosinusitis specimens. Am J Rhinol 2007, 21:527–532.

    Article  PubMed  Google Scholar 

  45. Le T, Psaltis A, Tan LW, Wormald PJ: The efficacy of topical antibiofilm agents in a sheep model of rhinosinusitis. Am J Rhinol 2008, 22:560–567.

    Article  PubMed  Google Scholar 

  46. Uren B, Psaltis A, Wormald PJ: Nasal lavage with mupirocin for the treatment of surgically recalcitrant chronic rhinosinusitis. Laryngoscope 2008, 118:1677–1680.

    Article  CAS  PubMed  Google Scholar 

  47. Ha KR, Psaltis AJ, Butcher AR, et al.: In vitro activity of mupirocin on clinical isolates of Staphylococcus aureus and its potential implications in chronic rhinosinusitis. Laryngoscope 2008, 118:535–540.

    Article  PubMed  Google Scholar 

  48. Ungkanont K, Damrongsak S: Effect of adenoidectomy in children with complex problems of rhinosinusitis and associated diseases. Int J Pediatr Otorhinolaryngol 2006, 70:1613–1617.

    Article  Google Scholar 

  49. Criddle MW, Stinson A, Savliwala M, Coticchia J: Pediatric chronic rhinosinusitis: a retrospective review. Am J Otolaryngol 2008, 29:372–378.

    Article  PubMed  Google Scholar 

  50. Bjarnsholt T, Jensen PO, Fiandaca MJ, et al.: Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 2009, 44:547–558.

    Article  PubMed  Google Scholar 

  51. Clement A, Tamalet A, Leroux E, et al.: Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax 2006, 61:895–902.

    Article  CAS  PubMed  Google Scholar 

  52. Starner TD, Shrout JD, Parsek MR, et al.: Subinhibitory concentrations of azithromycin decrease nontypeable Haemophilus influenzae biofilm formation and diminish established biofilms. Antimicrob Agents Chemother 2008, 2:137–145.

    Article  Google Scholar 

  53. Tré-Hardy M, Traore H, El Manssouri N, et al.: Evaluation of long-term co-administration of tobramycin and clarithromycin in a mature biofilm model of cystic fibrosis clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 2009 Jun 6 (Epub ahead of print).

  54. Tré-Hardy M, Macé C, El Manssouri N, et al.: Effect of antibiotic co-administration on young and mature biofilms of cystic fibrosis clinical isolates: the importance of the biofilm model. Int J Antimicrob Agents 2009, 33:40–45.

    Article  PubMed  Google Scholar 

  55. Moreau-Marquis S, Bomberger JM, Anderson GG, et al.: The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability. Am J Physiol Lung Cell Mol Physiol 2008, 295:L25–L37.

    Article  CAS  PubMed  Google Scholar 

  56. Moreau-Marquis S, O’Toole GA, Stanton BA: Tobramycin and FDA-approved iron chelators eliminate P. aeruginosa biofilms on cystic fibrosis cells. Am J Respir Cell Mol Biol 2009 Jan 23 (Epub ahead of print).

  57. Kaji C, Watanabe K, Apicella M, Watanabe H: Antimicrobial effect of fluoroquinolones for the eradication of nontypeable Haemophilus influenzae isolates within biofilm. Tohoku J Exp Med 2008, 214:121–128.

    Article  CAS  PubMed  Google Scholar 

  58. Wozniak DJ, Keyser R: Effects of subinhibitory concentrations of macrolide antibiotics on Pseudomonas aeruginosa. Chest 2004, 125(2 Suppl):62S–69S.

    Article  CAS  PubMed  Google Scholar 

  59. Dagan R, Leibovitz E, Cheletz G, et al.: Antibiotic treatment in acute otitis media promotes superinfection with resistant Streptococcus pneumoniae carried before initiation of treatment. J Infect Dis 2001, 183:880–886.

    Article  CAS  PubMed  Google Scholar 

  60. Berry JA, Biedlingmaier JF, Whelan PJ: In vitro resistance to bacterial biofilm formation on coated fluoroplastic tympanostomy tubes. Otolaryngol Head Neck Surg 2000, 123:246–251.

    Article  CAS  PubMed  Google Scholar 

  61. Kinnari TJ, Salonen EM, Jero J: Durability of the binding inhibition of albumin coating of tympanostomy tubes. Int J Pediatr Otorhinolaryngol 2003, 67:157–164.

    Article  PubMed  Google Scholar 

  62. Pettigrew MM, Gent JF, Revai K, et al.: Microbial interactions during upper respiratory tract infections. Emerg Infect Dis 2008, 14:1584–1591.

    Article  PubMed  Google Scholar 

  63. Li F, Yu J, Yang H, et al.: Effects of ambroxol on alginate of mature Pseudomonas aeruginosa biofilms. Curr Microbiol 2008, 57:1–7.

    Article  PubMed  Google Scholar 

  64. Pneumatikos IA, Dragoumanis CK, Bouros DE: Ventilator-associated pneumonia or endotracheal tube-associated pneumonia? An approach to the pathogenesis and preventive strategies emphasizing the importance of endotracheal tube. Anesthesiology 2009, 110:673–680.

    Article  PubMed  Google Scholar 

  65. Di Poto A, Sbarra MS, Provenza G, et al.: The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms. Biomaterials 2009, 30:3158–3166.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Christopher Post.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YC.C., Christopher Post, J. Biofilms in pediatric respiratory and related infections. Curr Allergy Asthma Rep 9, 449–455 (2009). https://doi.org/10.1007/s11882-009-0066-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11882-009-0066-6

Keywords

Navigation