Skip to main content
Log in

The Gauss-Bonnet operator of an infinite graph

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a general condition, to ensure essential self-adjointness for the Gauss-Bonnet operator \(D=d+\delta \), based on a notion of completeness as Chernoff. This gives essential self-adjointness of the Laplace operator both for functions and 1-forms on infinite graphs. This is used to extend Flanders result concerning solutions of Kirchhoff’s laws.

Résumé

Nous proposons une condition générale qui assure le caractère essentiellement auto-adjoint de l’opérateur de Gauss-Bonnet \(D=d+\delta \), basée sur une notion de complétude comme Chernoff. Comme conséquence, l’opérateur de Laplace agissant sur les fonctions et les 1-formes de graphes infinis est essentiellement auto-adjoint. Nous utilisons ce cadre pour étendre le résultat de Flanders à propos des solutions des lois de Kirchhoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anghel, N.: An abstract index theorem on noncompact Riemannian manifolds. Houston J. Math. 19(2), 223–237 (1993)

    MATH  MathSciNet  Google Scholar 

  2. Ayadi, H.: Semi-Fredholmness of the discrete Gauß-Bonnet operator, preprint (2013)

  3. Carmesin, J.: A characterization of the locally finite networks admitting non-constant harmonic functions. Potential Anal. 37, 229–245 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)

  5. Colin de Verdière, Y.: Théorème de Kirchhoff et théorie de Hodge, Séminaire de théorie spectrale et géométrie, Chambéry-Grenoble, 9, 89–94 (1990–1991)

  6. Colin de Verdière, Y.: Spectres de graphes, Cours Spécialisés [Specialized Courses], 4. Société Mathématique de France, Paris (1998)

    Google Scholar 

  7. Colin de Verdière, Y., Torki-Hamza, N., Truc, F.: Essential self-adjointness for combinatorial Schrödinger operators II-metrically non complete graphs. Math. Phys. Anal. Geom. 14, 21–38 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284(2), 787–794 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dodziuk, J., Karp, L.: Spectral and function theory for combinatorial Laplacians. Geometry of random motion (Ithaca, N.Y., 1987) 25–40, Contemp. Math., 73, Amer. Math. Soc., Providence (1988)

  10. Doyle, P.G., Snell, J.L.: Random walks and electric networks. Carus Math. Monogr. 22, (1999)

  11. Flanders, H.: Infinite networks: I- resistive networks. IEEE Trans. Circuit Theory 18(3), 326–331 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  12. Georgakopoulos, A.: Uniqueness of electrical currents in a network of finite total resistance. J. London Math. Soc. 82(2), 256–272 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Golénia, S., Haugomat, T.: On the A.C. spectrum of 1D discrete Dirac operator. Meth. Funct. An Top. arXiv:1207.3516 (2012)

  14. Huang, X., Keller, M., Masamune, J., Wojciechowski, R.K.: A note on self-adjoint extensions of the Laplacian on weighted graphs. J. Funct. Anal. 265(8), 1556–1578 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jorgensen, P.E.T., Pearse, E.P.J.: Operator theory of electrical resistance networks. Springer’s Universitext series, p 380. arXiv:0806.3881 (2008)

  16. Keller, M., Lenz, D.: Unbounded Laplacians on graphs: basic spectral properties and the heat equation. Math. Model. Nat. Phenom. 5(4), 198–224 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Keller, M., Lenz, D.: Dirichlet forms and stochastic completneness of graphs and subgraphs. J. Reine Angew. Math. 666, 189–223 (2012). arXiv:0904.2985

  18. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press. Current version available at http://mypage.iu.edu/rdlyons/ (2014)

  19. Masamune, J.: A Liouville property and its application to the Laplacian of an infinite graph. Contemp. Math. 484, 103–115 (2009)

    Article  MathSciNet  Google Scholar 

  20. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Academic Press, (1980)

  21. Soardi, P.M.: Potential Theory on infinite Networks, Lecture Notes in Mathematics 1590. Springer, Berlin (1994)

    Google Scholar 

  22. Thomassen, C.: Resistances and currents in infinite networks. J. Comb. Theory B 49, 87–102 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Torki-Hamza, N.: Laplaciens de graphes infinis I Graphes métriquement complets. Confluentes Mathematici 2(3), 333–350 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Torki-Hamza, N.: Essential Self-adjointness for combinatorial Schrödinger Operators I- Metrically complete graphs, pp 1–22. arXiv:1201.4644, Translation of [23] with some add, correction and update

  25. Zemanian, A.H.: Infinite electrical networks. Camb. Tracts Math. 101, 324 (2008)

    Google Scholar 

Download references

Acknowledgments

Part of this work was done while the author N.T-H was visiting the University of Nantes. She would like to thank the Laboratoire de Mathématiques Jean Leray (LMJL) for its hospitality. She is greatly indebted to the research unity (UR/13 Z S 47) for its continuous support. This work was supported by Grants through both Géanpyl project (FR 2962 du CNRS Mathématiques des Pays de Loire) and PHC-Utique (13 G 15-01) “Graphes, géométrie et théorie spectrale”. The authors thank Sylvain Golenia, Matthias Keller and Ognjen Milatovic for their reading with great interest and for their remarks. They would like to thank also the anonymous referee for their numerous relevant remarks and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colette Anné.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anné, C., Torki-Hamza, N. The Gauss-Bonnet operator of an infinite graph. Anal.Math.Phys. 5, 137–159 (2015). https://doi.org/10.1007/s13324-014-0090-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-014-0090-0

Keywords

Mathematics Subject Classification

Navigation