Skip to main content
Log in

Magnetic Dirac-harmonic maps

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a functional, whose critical points couple Dirac-harmonic maps from surfaces with a two form. The critical points can be interpreted as coupling the prescribed mean curvature equation to spinor fields. On the other hand, this functional also arises as part of the supersymmetric sigma model in theoretical physics. In two dimensions it is conformally invariant. We call critical points of this functional magnetic Dirac-harmonic maps. We study geometric and analytic properties of magnetic Dirac-harmonic maps including their regularity and the removal of isolated singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, O., Singer, I.M.: Beyond the elliptic genus. Nucl. Phys. B 633(3), 309–344 (2002)

  2. Ammann, B., Ginoux, N.: Dirac-harmonic maps from index theory. Calc. Var. Partial Differ. Equ. 47(3–4), 739–762 (2013)

  3. Bethuel, F.: Un résultat de régularité pour les solutions de l’équation de surfaces à courbure moyenne prescrite. C. R. Acad. Sci. Paris Sér. I Math. 314(13), 1003–1007 (1992)

  4. Branding, V.: The evolution equations for Dirac-harmonic maps, Ph.D. thesis, Universitaet Potsdam (2013)

  5. Chen, Q., Jost, J., Wang, G.: Liouville theorems for Dirac-harmonic maps. J. Math. Phys. 48(11), 113517, 13 (2007)

  6. Chen, Q., Jost, J., Wang, G., Zhu, M.: The boundary value problem for Dirac-harmonic maps. J. EMS 15(3), 997–1031 (2013)

    MATH  MathSciNet  Google Scholar 

  7. Chen, Q., Jost, J., Li, J., Wang, G.: Regularity theorems and energy identities for Dirac-harmonic maps. Math. Z. 251(1), 61–84 (2005)

  8. Chen, Q., Jost, J., Li, J., Wang, G.: Dirac-harmonic maps. Math. Z. 254(2), 409–432 (2006)

  9. Chen, Q., Jost, J., Wang, G.: Nonlinear Dirac equations on Riemann surfaces. Ann. Glob. Anal. Geom. 33(3), 253–270 (2008)

  10. Chen, Q., Jost, J., Wang, G.: The maximum principle and the Dirichlet problem for Dirac-harmonic maps. Calc. Var. Partial Differ. Equ. 47(1–2), 87–116 (2013)

  11. Choné, P.: A regularity result for critical points of conformally invariant functionals. Potential Anal. 4(3), 269–296 (1995)

  12. Fuchs, J., Nikolaus, T., Schweigert, C., Waldorf, K.: Bundle gerbes and surface holonomy. In: European Congress of Mathematics. Eur. Math. Soc., Zürich, pp. 167–195 (2010)

  13. Grüter, M.: Regularity of weak \(H\)-surfaces. J. Reine Angew. Math. 329, 1–15 (1981)

  14. Grüter, M.: Conformally invariant variational integrals and the removability of isolated singularities. Manuscr. Math. 47(1–3), 85–104 (1984)

  15. Hélein, F.: Harmonic maps, conservation laws and moving frames. In: Cambridge Tracts in Mathematics, vol. 150, 2nd edn. Cambridge University Press, Cambridge (2002). Translated from the 1996 French original, with a foreword by James Eells

  16. Hull, C.M., Papadopoulos, G., Townsend, P.K.: Potentials for \((p,0)\) and \((1,1)\) supersymmetric sigma models with torsion. Phys. Lett. B 316(2–3), 291–297 (1993)

    Article  MathSciNet  Google Scholar 

  17. Koh, D.: The evolution equation for closed magnetic geodesics. Dissertation, Universitätsverlag Potsdam (2008)

  18. Lawson, H.B., Jr., Michelsohn, M.-L.: Spin geometry. In: Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

  19. Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1–22 (2007)

  20. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of \(2\)-spheres. Ann. Math. (2) 113(1), 1–24 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schneider, M.: Closed magnetic geodesics on \(S^2\). J. Differ. Geom. 87(2), 343–388 (2011)

  22. Sharp, B., Zhu, M.: Regularity at the free boundary for Dirac-harmonic maps from surfaces. arXiv:1306.4260 (2013)

  23. Waldorf, K.: Surface holonomy, handbook of pseudo-Riemannian geometry and supersymmetry. IRMA Lect. Math. Theor. Phys., vol. 16. Eur. Math. Soc., Zürich, pp. 653–682 (2010)

  24. Wang, C., Xu, D.: Regularity of Dirac-harmonic maps. Int. Math. Res. Not. IMRN 2009(20), 3759–3792 (2009)

  25. Xu, D., Chen, Z.: Regularity for Dirac-harmonic map with Ricci type spinor potential. Calc. Var. Partial Differ. Equ. 46(3–4), 571–590 (2013)

  26. Zhao, L.: Energy identities for Dirac-harmonic maps. Calc. Var. Partial Differ. Equ. 28(1), 121–138 (2007)

  27. Zhu, M.: Regularity for weakly Dirac-harmonic maps to hypersurfaces. Ann. Glob. Anal. Geom. 35(4), 405–412 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Branding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branding, V. Magnetic Dirac-harmonic maps. Anal.Math.Phys. 5, 23–37 (2015). https://doi.org/10.1007/s13324-014-0081-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-014-0081-1

Keywords

Mathematics Subject Classification (2000)

Navigation