Skip to main content

Advertisement

Log in

Cyclin-dependent kinase 4 overexpression is mostly independent of gene amplification and constitutes an independent prognosticator for nasopharyngeal carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Data mining in the public domain demonstrates that cyclin-dependent kinase 4 (CDK4) is highly expressed in nasopharyngeal carcinomas (NPC). Associated with cyclin-D, CDK4 phosphorylates and inactivates retinoblastoma (Rb) protein family members and mediates progression through the G1- to the S-phase of the cell cycle. Amplification and overexpression of CDK4 has been identified in various human malignancies. However, its expression and amplification has never been systemically evaluated in NPC. This study aimed to evaluate the amplification and expression status, correlation with clinicopathological features, and prognostic implications of CDK4 based on public domain dataset and in our well-defined cohort of NPC patients. The association between CDK4 transcript level and gene dosage was explored by analysis of an independent public domain dataset. We retrospectively assessed CDK4 immunoexpression in biopsies of 124 consecutive NPC patients devoid of initial distant metastasis and treated according to consistent guidelines. The results were correlated with clinicopathological features, local recurrence-free survival (LRFS), distant metastasis-free survival (DMeFS), and disease-specific survival (DSS). High levels of CDK4 protein were positively correlated with the T 3, 4 status (p = 0.024); N 2, 3 status (p < 0.001); and the American Joint Committee on Cancer stage 3, 4 (p < 0.001). Multivariate analysis suggested high CDK4 expression was an independent prognostic indicator of worse DMeFS (p = 0.001, hazard ratio (HR) = 3.226) and DSS (p = 0.037, HR = 1.838). Although CDK4 is frequently upregulated, its gene locus is very uncommonly amplified in NPC. CDK4 overexpression is mostly independent with gene amplification and represents a potential prognostic biomarker in NPC and may indicate tumor aggressiveness through cell cycle dysregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NPC:

Nasopharyngeal carcinoma

EBV:

Epstein-Barr virus

WHO:

World Health Organization

CDK4:

Cyclin-dependent kinase 4

Rb:

Retinoblastoma

LRFS:

Local recurrence-free survival

DMeFS:

Distant metastasis-free survival

DSS:

Disease-specific survival

RT:

Radiotherapy

References

  1. Ng WT, Lee MC, Hung WM, et al. Clinical outcomes and patterns of failure after intensity-modulated radiotherapy for nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys. 2011;79:420–8.

    Article  PubMed  Google Scholar 

  2. Lee AW, Sze WM, Au JS, et al. Treatment results for nasopharyngeal carcinoma in the modern era: the Hong Kong experience. Int J Radiat Oncol Biol Phys. 2005;61:1107–16.

    Article  PubMed  Google Scholar 

  3. Leung TW, Tung SY, Sze WK, et al. Treatment results of 1070 patients with nasopharyngeal carcinoma: an analysis of survival and failure patterns. Head Neck. 2005;27:555–65.

    Article  PubMed  Google Scholar 

  4. Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer. 2008;8:671–82.

    Article  CAS  PubMed  Google Scholar 

  5. Benson C, Kaye S, Workman P, Garrett M, Walton M, de Bono J. Clinical anticancer drug development: targeting the cyclin-dependent kinases. Brit J Cancer. 2005;92:7–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kao YC, Lee SW, Lin LC, et al. Fatty acid synthase overexpression confers an independent prognosticator and associates with radiation resistance in nasopharyngeal carcinoma. Tumour Biol. 2013;34(2):759–68.

    Article  CAS  PubMed  Google Scholar 

  7. Win KT, Lee SW, Huang HY, et al. Nicotinamide N-methyltransferase overexpression is associated with Akt phosphorylation and indicates worse prognosis in patients with nasopharyngeal carcinoma. Tumour Biol. 2013;34(6):3923–31.

    Article  CAS  PubMed  Google Scholar 

  8. Lan J, Tai HC, Lee SW, Chen TJ, Huang HY, Li CF. Deficiency in expression and epigenetic DNA Methylation of ASS1 gene in nasopharyngeal carcinoma: negative prognostic impact and therapeutic relevance. Tumour Biol. 2014;35(1):161–9.

    Article  CAS  PubMed  Google Scholar 

  9. Lan J, Huang HY, Lee SW, et al. TOP2A overexpression as a poor prognostic factor in patients with nasopharyngeal carcinoma. Tumour Biol. 2014;35(1):179–87.

    Article  CAS  PubMed  Google Scholar 

  10. Ma LJ, Lee SW, Lin LC, et al. Fibronectin overexpression is associated with latent membrane protein 1 expression and has independent prognostic value for nasopharyngeal carcinoma. Tumour Biol. 2014;35(2):1703–12.

    Article  CAS  PubMed  Google Scholar 

  11. Hsu HP, Li CF, Lee SW, et al. Overexpression of stathmin 1 confers an independent prognostic indicator in nasopharyngeal carcinoma. Tumour Biol. 2013 Nov 12. [Epub ahead of print]

  12. Budwit-Novotny DA, McCarty KS, Cox EB, et al. Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res. 1986;46:5419–25.

    CAS  PubMed  Google Scholar 

  13. McClelland RA, Finlay P, Walker KJ, et al. Automated quantitation of immunocytochemically localized estrogen receptors in human breast cancer. Cancer Res. 1990;50:3545–50.

    CAS  PubMed  Google Scholar 

  14. Masai H, Arai K. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cellular Physiol. 2002;190:287–96.

    Article  CAS  Google Scholar 

  15. Gstaiger M, Jordan R, Lim M, et al. Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci U S A. 2001;98:5043–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Sutterluty H, Chatelain E, Marti A, et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol. 1999;1:207–14.

    Article  CAS  PubMed  Google Scholar 

  17. Seder CW, Hartojo W, Lin L, et al. Upregulated INHBA expression may promote cell proliferation and is associated with poor survival in lung adenocarcinoma. Neoplasia. 2009;11:388–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Molven A. CDK4 (cyclin-dependent kinase 4). Atlas Genet Cytogenet Oncol Haematol. 2007;11:117–8.

    Google Scholar 

  19. Wang YL, Uhara H, Yamazaki Y, Nikaido T, Saida T. Immunohistochemical detection of CDK4 and p16INK4 proteins in cutaneous malignant melanoma. Brit J Dermatol. 1996;134:269–75.

    Article  CAS  Google Scholar 

  20. Poomsawat S, Buajeeb W, Khovidhunkit SO, Punyasingh J. Alteration in the expression of cdk4 and cdk6 proteins in oral cancer and premalignant lesions. J Oral Pathol Med: Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. 2010;39:793–9.

    Article  Google Scholar 

  21. Al-Aynati MM, Radulovich N, Ho J, Tsao MS. Overexpression of G1-S cyclins and cyclin-dependent kinases during multistage human pancreatic duct cell carcinogenesis. Clin Cancer Res: Off J Am Assoc Cancer Res. 2004;10:6598–605.

    Article  CAS  Google Scholar 

  22. Tang LH, Contractor T, Clausen R, et al. Attenuation of the retinoblastoma pathway in pancreatic neuroendocrine tumors due to increased cdk4/cdk6. Clin Cancer Res: Off J Am Assoc Cancer Res. 2012;18:4612–20.

    Article  CAS  Google Scholar 

  23. An HX, Beckmann MW, Reifenberger G, Bender HG, Niederacher D. Gene amplification and overexpression of CDK4 in sporadic breast carcinomas is associated with high tumor cell proliferation. Am J Pathol. 1999;154:113–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Rollbrocker B, Waha A, Louis DN, Wiestler OD, von Deimling A. Amplification of the cyclin-dependent kinase 4 (CDK4) gene is associated with high cdk4 protein levels in glioblastoma multiforme. Acta Neuropathol. 1996;92:70–4.

    Article  CAS  PubMed  Google Scholar 

  25. Ghazizadeh M, Jin E, Shimizu H, et al. Role of cdk4, p16INK4, and Rb expression in the prognosis of bronchioloalveolar carcinomas. Respir Int Rev Thor Dis. 2005;72:68–73.

    CAS  Google Scholar 

  26. Wu A, Wu B, Guo J, et al. Elevated expression of CDK4 in lung cancer. J Transl Med. 2011;9:38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gast A, Scherer D, Chen B, et al. Somatic alterations in the melanoma genome: a high-resolution array-based comparative genomic hybridization study. Gene Chromosome Cancer. 2010;49:733–45.

    Article  CAS  Google Scholar 

  28. Muthusamy V, Hobbs C, Nogueira C, et al. Amplification of CDK4 and MDM2 in malignant melanoma. Gene Chromosome Cancer. 2006;45:447–54.

    Article  CAS  Google Scholar 

  29. Pilotti S, Della Torre G, Mezzelani A, et al. The expression of MDM2/CDK4 gene product in the differential diagnosis of well differentiated liposarcoma and large deep-seated lipoma. Brit J Cancer. 2000;82:1271–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wikman H, Nymark P, Vayrynen A, et al. CDK4 is a probable target gene in a novel amplicon at 12q13.3-q14.1 in lung cancer. Gene Chromosome Cancer. 2005;42:193–9.

    Article  CAS  Google Scholar 

  31. Yu J, Deshmukh H, Payton JE, et al. Array-based comparative genomic hybridization identifies CDK4 and FOXM1 alterations as independent predictors of survival in malignant peripheral nerve sheath tumor. Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17:1924–34.

    Article  CAS  Google Scholar 

  32. Shimura T, Kakuda S, Ochiai Y, et al. Acquired radioresistance of human tumor cells by DNA-PK/AKT/GSK3beta-mediated cyclin D1 overexpression. Oncogene. 2010;29:4826–37.

    Article  CAS  PubMed  Google Scholar 

  33. Shimura T, Kakuda S, Ochiai Y, Kuwahara Y, Takai Y, Fukumoto M. Targeting the AKT/GSK3beta/cyclin D1/Cdk4 survival signaling pathway for eradication of tumor radioresistance acquired by fractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2011;80:540–8.

    Article  CAS  PubMed  Google Scholar 

  34. Hagen KR, Zeng X, Lee MY, et al. Silencing CDK4 radiosensitizes breast cancer cells by promoting apoptosis. Cell Div. 2013;8:10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. de Carcer G, Perez de Castro I, Malumbres M. Targeting cell cycle kinases for cancer therapy. Curr Med Chem. 2007;14:969–85.

    Article  PubMed  Google Scholar 

  36. Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004;3:1427–38.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by Chi Mei Medical Center (CMFHR10303) and the Ministry of Health and Welfare (MOHW103-TD-B-111-05).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Feng Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, TJ., Lee, SW., Lin, LC. et al. Cyclin-dependent kinase 4 overexpression is mostly independent of gene amplification and constitutes an independent prognosticator for nasopharyngeal carcinoma. Tumor Biol. 35, 7209–7216 (2014). https://doi.org/10.1007/s13277-014-1884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1884-2

Keywords

Navigation