Skip to main content

Advertisement

Log in

Association of DNA repair and cell cycle gene variations with breast cancer risk in Northeast Indian population: a multiple interaction analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

Polymorphisms in DNA repair and cell cycle genes contribute to increased breast cancer (BC) risk. Their association and interaction in relation to betel quid and tobacco chewing habits need exhaustive multi-analytical investigation to explain BC predisposition due to DNA damage. Polymorphism in TP53-72Arg>Pro, RAD51-135G>C, BRCA2, and CCND1-G870A were examined in 204 BC cases and 217 controls from Northeast Indian population. Multifaceted analytic approaches were used to explore relationships between polymorphisms, tobacco history, and BC susceptibility. Betel quid chewing was identified as the predominant risk factor. CCND-AA and dominant model showed protection towards BC in betel quid chewer (BQC) [(0.28 (0.10–0.77), 0.01 and 0.32 (0.12–0.81), 0.01)] and non-betel quid chewers (NBQC) [(0.26 (0.09–0.78), 0.01 and 0.37 (0.16–0.87), 0.02)]. TP53-Pro/Pro genotype showed protection towards BC in NBQC (0.29 (0.10–0.81), p = 0.01) and (0.51 (0.32–0.80), p = 0.003, respectively). RAD51-C allele was associated with BC risk (2.03 (1.26–3.30) 0.002) in BQC. Two BQC cases had BRCA2 8415G>T:K2729N mutation in Exon18. MDR analysis showed best four locus model with TBA 0.6765 (0.005) and CVC of 10/10 in NBQC. Interaction diagram concurred the interactions between TP53 and RAD51 (1.32 %) with independent effect (1.89 %) of CCND1in NBQC. In CART analysis, BQC with CCND1 GG genotype were at risk (OR = 33.0; 95 % CI = 6.08–179.07), p < 0.001) followed by combination of BQC, CCND1, No-Smk, and Alc (OR = 42.00; 95 % CI = 5.11–345.11, p < 0.001). Risk was also observed in BQC, CCND1, No-Smk, Non-Alc, and TP53 combination (OR = 14.84; 95 % CI = 3.13–70.34, p < 0.001) and BQC, CCND1, No-Smk, Non-Alc, TP53 (OR = 9.40; 95 % CI = 1.99–44.34, p < 0.001). NBQC group showed risk with combination of NBQC and TP53 (OR = 5.54; 95 % CI = 1.11–27.42, p = 0.03). Genetic variants in DNA repair and cell cycle genes contribute to BC risk through gene–gene and gene–environmental interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gajalakshmi V, Mathew A, Brennan P, Rajan B, Kanimozhi VC, Mathews A, et al. Breastfeeding and breast cancer risk in India: a multicenter case-control study. Int J Cancer. 2009;125:662–5.

    Article  CAS  PubMed  Google Scholar 

  2. Nandakumar A, Ramnath T, Chaturvedi M. The magnitude of cancer breast in India: a summary. Indian J Surg Oncol. 2010;1:8–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kaushal M, Mishra AK, Raju BS, Ihsan R, Chakraborty A, Sharma J, et al. Betel quid chewing as an environmental risk factor for breast cancer. Mutat Res. 2010;703:143–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kaushal M, Mishra AK, Sharma J, Zomawia E, Kataki A, Kapur S, et al. Genomic alterations in breast cancer patients in betel quid and non betel quid chewers. PLoS One. 2012;7:e43789.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Martin MB, Reiter R, Johnson M, Shah MS, Iann MC, Singh B, et al. Effects of tobacco smoke condensate on estrogen receptor-alpha gene expression and activity. Endocrinology. 2007;148:4676–86.

    Article  CAS  PubMed  Google Scholar 

  6. Smith TR, Levine EA, Perrier ND, Miller MS, Freimanis RI, Lohman K, et al. DNA-repair genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2003;12:1200–4.

    CAS  PubMed  Google Scholar 

  7. Seedhouse C, Faulkner R, Ashraf N, Das-Gupta E, Russell N. Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin Cancer Res. 2004;10:2675–80.

    Article  CAS  PubMed  Google Scholar 

  8. Sliwinski T, Renata Krupa R, Majsterek I, Rykala J, Kolacinska A, Morawiec Z, et al. Polymorphisms of the BRCA2 and RAD51 genes in breast cancer. Breast Cancer Res Treat. 2005;94:105–9.

    Article  CAS  PubMed  Google Scholar 

  9. Siddique M, Sabapathy K. Trp53-dependent DNA-repair is affected by the codon 72 polymorphism. Oncogene. 2006;25:3489–500.

    Article  CAS  PubMed  Google Scholar 

  10. Bewick MA, Conlon MSC, Lafrenie RM. Polymorphisms in XRCC1, XRCC3, and CCND1 and survival after treatment for metastatic breast cancer. J Clin Oncol. 2006;24:5645–54.

    Article  CAS  PubMed  Google Scholar 

  11. Levy-Lahad E, Lahad A, Eisenberg S, Dagan E, Paperna T, Kasinetz L, et al. A single nucleotide polymorphism in the RAD51 gene modifies cancer risk in BRCA2 but not BRCA1 carriers. Proc Natl Acad Sci U S A. 2001;98:3232–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Porter TR, Richards FM, Houlston RS, Evans DG, Jankowski JA, Macdonald F, et al. Contribution of cyclin d1 (CCND1) and E-cadherin (CDH1) polymorphisms to familial and sporadic colorectal cancer. Oncogene. 2002;21:1928–33.

    Article  CAS  PubMed  Google Scholar 

  13. Srivastava A, Sharma KL, Srivastava N, Misra S, Mittal B. Significant role of estrogen and progesterone receptor sequence variants in gallbladder cancer predisposition: a multi-analytical strategy. PLoS One. 2012;7:e40162.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ihsan R, Chauhan PS, Mishra AK, Yadav DS, Kaushal M, Sharma JD, et al. Multiple analytical approaches reveal distinct gene-environment interactions in smokers and non smokers in lung cancer. PLoS One. 2011;6:e29431.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Nair U, Bartsch H, Nair J. Alert for an epidemic of oral cancer due to use of the betel quid substitutes gutkha and pan masala: a review of agents and causative mechanisms. Mutagenesis. 2004;19:251–62.

    Article  CAS  PubMed  Google Scholar 

  16. Chatterjee A, Deb S. Genotoxic effect of arecoline given either by the peritoneal or oral route in murine bone marrow cells and the influence of N-acetylcysteine. Cancer Lett. 1999;139:23–31.

    Article  CAS  PubMed  Google Scholar 

  17. Lu C, Dong J, Ma H, Jin G, Hu Z, Peng Y, et al. CCND1 G870A polymorphism contributes to breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat. 2009;116:571–5.

    Article  CAS  PubMed  Google Scholar 

  18. Hong Y, Eu KW, Seow-Choen F, Fook-Chong S, Cheah PY. GG genotype of cyclin D1 G870A polymorphism is associated with increased risk and advanced colorectal cancer in patients in Singapore. Eur J Cancer. 2005;41:1037–44.

    Article  CAS  PubMed  Google Scholar 

  19. Jia A, Gong J, Li Y, Hao Z, Chang X, Dai F, et al. GG genotype of cyclin D1 G870A polymorphism is associated with non-cardiac gastric cancer in a high-risk region of China. Scand J Gastroenterol. 2008;43:1353–9.

    Article  CAS  PubMed  Google Scholar 

  20. Catarino R, Matos A, Pinto D, Pereira D, Craveiro R, Vasconcelos A, et al. Increased risk of cervical cancer associated with cyclin D1 gene A870G polymorphism. Cancer Genet Cytogenet. 2005;160:49–54.

    Article  CAS  PubMed  Google Scholar 

  21. Catarino RJ, Breda E, Coelho V, Pinto D, Sousa H, Lopes C, et al. Association of the A870G cyclin D1 gene polymorphism with genetic susceptibility to nasopharyngeal carcinoma. Head Neck. 2006;28:603–8.

    Article  PubMed  Google Scholar 

  22. Matthias C, Branigan K, Jahnke V, Leder K, Haas J, Heighway J, et al. Polymorphism within the cyclin D1 gene is associated with prognosis in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 1998;4:2411–8.

    CAS  PubMed  Google Scholar 

  23. Matthias C, Jahnke V, Jones PW, Hoban PR, Alldersea JE, Worrall SF, et al. Cyclin D1, glutathione S-transferase, and cytochrome P450 genotypes and outcome in patients with upper aerodigestive tract cancers: assessment of the importance of individual genes using multivariate analysis. Cancer Epidemiol Biomarkers Prev. 1999;8:815–23.

    CAS  PubMed  Google Scholar 

  24. Bala S, Peltomaki P. CYCLIN D1 as a genetic modifier in hereditary nonpolyposis colorectal cancer. Cancer Res. 2001;61:6042–5.

    CAS  PubMed  Google Scholar 

  25. Comstock CE, Augello MA, Benito RP, Karch J, Tran TH, Utama FE, et al. Cyclin D1 splice variants: polymorphism, risk, and isoform-specific regulation in prostate cancer. Clin Cancer Res. 2009;15:5338–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Krupa R, Sobczuk A, Poplawski T, Wozniak K, Blasiak J. DNA damage and repair in endometrial cancer in correlation with the hOGG1 and RAD51 genes polymorphism. Mol Biol Rep. 2011;38:1163–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Werbrouck J, De Ruyck K, Duprez F, Van Eijkeren M, Rietzschel E, Bekaert S, et al. Single-nucleotide polymorphisms in DNA double-strand break repair genes: association with head and neck cancer and interaction with tobacco use and alcohol consumption. Mutat Res. 2008;656:74–81.

    Article  CAS  PubMed  Google Scholar 

  28. Kaushal M, Chattopadhyay I, Phukan R, Purkayastha J, Mahanta J, Kapur S, et al. Contribution of germ line BRCA2 sequence alterations to risk of familial esophageal cancer in a high-risk area of India. Dis Esophagus. 2010;23:71–5.

    Article  CAS  PubMed  Google Scholar 

  29. Marx G. Possible function found for breast cancer genes. Science. 1997;276:531–2.

    Article  CAS  PubMed  Google Scholar 

  30. Ceschi M, Sun CL, Van Den Berg D, Koh WP, Yu MC, Probst-Hensch N. The effect of cyclin D1 (CCND1) G870A-polymorphism on breast cancer risk is modified by oxidative stress among Chinese women in Singapore. Carcinogenesis. 2005;26:1457–64.

    Article  CAS  PubMed  Google Scholar 

  31. Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R, et al. Importance of TP53 codon 72 and intron 3 duplication 16bp polymorphisms in prediction of susceptibility on breast cancer. BMC Cancer. 2008;8:32.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Gochhait S, Bukhari SI, Bairwa N, Vadhera S, Darvishi K, Raish M, et al. Implication of BRCA2–26G > A 5′ untranslated region polymorphism in susceptibility to sporadic breast cancer and its modulation by p53 codon 72 Arg > Pro polymorphism. Breast Cancer Res. 2007;9:R71.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Buchhop S, Gibson MK, Wang XW, Wagner P, Sturzbecher HW, Harris CC. Interaction of p53 with the human Rad51 protein. Nucleic Acids Res. 1997;25:3868–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zhai R, Chen F, Liu G, Su L, Kulke MH, Asomaning K, et al. Interactions among genetic variants in apoptosis pathway genes, reflux symptoms, body mass index, and smoking indicate two distinct etiologic patterns of esophageal adenocarcinoma. J Clin Oncol. 2010;28:2445–51.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Briollais L, Wang Y, Rajendram I, Onay V, Shi E, Knight J, et al. Methodological issues in detecting gene-gene interactions in breast cancer susceptibility: a population-based study in Ontario. BMC Med. 2007;5:22.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding given by the Indian Council of Medical Research (ICMR), New Delhi, India.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Saxena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 56 kb)

Supplementary Table 2

(DOC 68 kb)

Supplementary Table 3

(DOC 40 kb)

Supplementary Fig. 1

DHPLC analysis showing heteroduplex peaks and homoduplex peaks in Exon27 of BRCA2 gene. The polymorphic variant was identified as 10462A>G: I3412V by sequencing (JPEG 389 kb)

High Resolution Image (TIFF 359 kb)

Supplementary Fig. 2

DHPLC analysis showing heteroduplex homoduplex peaks in Exon18 of BRCA2 gene. The variant was identified as 8415G>T: K2729N in Exon18 of BRCA2 gene (JPEG 427 kb)

High Resolution Image (TIFF 469 kb)

Supplementary Fig. 3

DHPLC analysis of −26G>A polymorphism. Heteroduplex peak shows samples with GA genotype and homoduplex peaks shows samples with AA genotype. Sequencing analysis of samples with Exon 2 variants depicting GA heterozygous and AA homozygous genotype of BRCA2 gene. (JPEG 537 kb)

High Resolution Image (TIFF 518 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasson, M.K., Chauhan, P.S., Singh, L.C. et al. Association of DNA repair and cell cycle gene variations with breast cancer risk in Northeast Indian population: a multiple interaction analysis. Tumor Biol. 35, 5885–5894 (2014). https://doi.org/10.1007/s13277-014-1779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1779-2

Keywords

Navigation