Skip to main content
Log in

Comparative transcriptomic profiling of larvae and post-larvae of Macrobrachium rosenbergii in response to metamorphosis and salinity exposure

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The high-throughput sequencing technology provides a platform for revealing the expressed genes within a tissue at a specific time. The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important species, which is surviving in a wide-range of salinity. In this study, to understand the physiological mechanism of adaptability with respect to moulting and salinity; transcriptome sequencing of larvae and post-larvae of M. rosenbergii was performed using the Illumina GAIIx platform. The generated raw read-data comprised 71,391,946 and 75,276,622 paired-end reads (PE) for larvae and post-larvae respectively. Using CLC bio Genomic Workbench version 7.5 (CGWB), 71.39 million and 75.27 million of each 72 base paired-end, high quality reads were assembled into 43,383 (N50 1852) and 44,960 (N50 1874) transcripts, respectively, for larvae and post-larvae. The nucleotide level annotation of both transcriptomes showed significant similarity with unigenes of closely related species. The Gene Ontology analysis suggested enrichment of transcripts involving several biological processes linked to transcriptional regulation, signal transduction, immune response, ion-binding. Differential gene expression analysis using CGWB and DESeq identified 9680 deregulated genes of which 3454 unigenes were up-regulated and 3068 down-regulated by ≥1.5 fold (p < 0.05) in larval stage compared to post-larval stage. However, in larval stage 938 genes were down regulated and 1599 genes up-regulated by ≥3 fold with p < 0.05. GO enrichment of differentially expressed genes was shown several molecular functions for maintaining homeostasis against salinity stress. To validate the expression patterns, few transcripts were chosen for quantitative real-time PCR that showed the consistency and exactness of our analysis. In addition, we also speculated the enzymatic pathway using KEGG, which depicted that up-regulated genes are involved in several significant metabolic pathways and those are critical for maintaining osmoregulation and linked with metamorphosis. Therefore, we have generated valuable information of salinity tolerant genes in the larval and post larval stage of M. rosenbergii during salt- and freshwater compliances, which will be further harnessed for gene targeting. The present finding would provide the basis for further screening of salt tolerant genes associated markers for selective breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Annadurai RS, Jayakumar V, Mugasimangalam RC, Katta MA, Anand S, Gopinathan S, Sarma SP, Fernandes SJ, Mullapudi N, Murugesan S, Rao SN (2012) Next generation sequencing and de novo transcriptome analysis of Costus pictus D. Don, a non-model plant with potent anti-diabetic properties. BMC Genomics 13:663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barman HK, Patra SK, Das V, Mohapatra SD, Jayasankar P, Mohapatra C, Mohanta R, Panda RP, Rath SN (2012) Identification and characterization of differentially expressed transcripts in the gills of freshwater prawn (Macrobrachium rosenbergii) under salt stress. ScientificWorldJournal 2012:149361

    Article  PubMed  PubMed Central  Google Scholar 

  • Chand BK, Trivedi RK, Dubey SK, Routb SK, Beg MM, Das UK (2015) Effect of salinity on survival and growth of giant freshwater prawn Macrobrachium rosenbergii (de Man). Aquac Rep 2:26–33

    Article  Google Scholar 

  • Chen K, Li E, Li T, Xu C, Wang X, Lin H, Qin JG, Chen L (2015) Transcriptome and molecular pathway analysis of the hepatopancreas in the Pacific White Shrimp Litopenaeus vannamei under chronic low-salinity stress. PLoS One 10:e0131503

    Article  PubMed  PubMed Central  Google Scholar 

  • Delattre M, Felix MA (2009) The evolutionary context of robust and redundant cell biological mechanisms. BioEssays 31:537–545

    Article  PubMed  Google Scholar 

  • Dubey RS, Singh AK (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol Plant 42:233–239

    Article  CAS  Google Scholar 

  • Duchateau PN, Pullinger CR, Cho MH, Eng C, Kane JP (2001) Apolipoprotein L gene family: tissue-specific expression, splicing, promoter regions; discovery of a new gene. J Lipid Res 42:620–630

    CAS  PubMed  Google Scholar 

  • Durica DS, Schloss JA, Crain WR Jr (1980) Organization of actin gene sequences in the sea urchin: molecular cloning of an intron-containing DNA sequence coding for a cytoplasmic actin. Proc Natl Acad Sci USA 77:5683–5687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FaML Le Gac (1993) Expression of insulin- like growth factor (IGF) I and action of IGF I and II in the trout testis. Reprod Nutr Dev 33:80–81

    Google Scholar 

  • Fischer C, Kugler A, Hoth S, Dietrich P (2013) An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. Plant Cell Physiol 54:573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang X, Zou Z, Jia X, Wang Y, Zhang Z (2014) Transcriptome analysis of the differences in gene expression between testis and ovary in green mud crab (Scylla paramamosain). BMC Genomics 15:585

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu D, Pan L, Zhao Q, Ren Q (2015) Transcriptomic response to low salinity stress in gills of the Pacific white shrimp Litopenaeus vannamei. Mar Genomics 24(Pt 3):297–304

    Article  PubMed  Google Scholar 

  • Jung H, Lyons RE, Dinh H, Hurwood DA, McWilliam S, Mather PB (2011) Transcriptomics of a giant freshwater prawn (Macrobrachium rosenbergii): de novo assembly, annotation and marker discovery. PLoS One 6:e27938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitsios G, Doonan JH (2011) Cyclin dependent protein kinases and stress responses in plants. Plant Signal Behav 6:204–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    CAS  PubMed  Google Scholar 

  • Larsen PF, Nielsen EE, Koed A, Thomsen DS, Olsvik PA, Loeschcke V (2008) Interpopulation differences in expression of candidate genes for salinity tolerance in winter migrating anadromous brown trout (Salmo trutta L.). BMC Genet 9:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Leise EM, Kempf S, Durham N, Gifondorwa DJ (2004) Induction of metamorphosis in the marine gastropod Ilyanassa obsoleta: 5HT, NO and programmed cell death. Acta Biol Hung 55:293–300

    Article  CAS  PubMed  Google Scholar 

  • Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP kinase cascades. Adv Cancer Res 74:49–139

    Article  CAS  PubMed  Google Scholar 

  • Lilius G, Holmberg N, Bulow L (1996) Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Nat Biotechnol 14:177–180

    Article  CAS  Google Scholar 

  • Lu G, Ren S, Korge P, Choi J, Dong Y, Weiss J, Koehler C, Chen JN, Wang Y (2007) A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development. Genes Dev 21:784–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucu C, Towle DW (2003) Na(+)+K(+)-ATPase in gills of aquatic crustacea. Comp Biochem Physiol A: Mol Integr Physiol 135:195–214

    Article  Google Scholar 

  • Lv J, Liu P, Wang Y, Gao B, Chen P, Li J (2013) Transcriptome analysis of Portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation. PLoS One 8:e82155

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv J, Liu P, Gao B, Wang Y, Wang Z, Chen P, Li J (2014) Transcriptome analysis of the Portunus trituberculatus: de novo assembly, growth-related gene identification and marker discovery. PLoS One 9:e94055

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma K, Qiu G, Feng J, Li J (2012) Transcriptome analysis of the oriental river prawn, Macrobrachium nipponense using 454 pyrosequencing for discovery of genes and markers. PLoS One 7:e39727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madsen S, Bern H (1993) In-vitro effects of insulin-like growth factor-I on gill Na+, K+-ATPase in coho salmon, Oncorhynchus kisutch. J Endocrinol 138:23–30

    Article  CAS  PubMed  Google Scholar 

  • McCormick SD, Sakamoto T, Hasegawa S, Hirano T (1991) Osmoregulatory actions of insulin-like growth factor-I in rainbow trout (Oncorhynchus mykiss). J Endocrinol 130:87–92

    Article  CAS  PubMed  Google Scholar 

  • McCormick SD, Regish AM, Christensen AK (2009) Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J Exp Biol 212:3994–4001

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Zhu Q, Zhang L, Li C, Li L, She Z, Huang B, Zhang G (2013) Genome and transcriptome analyses provide insight into the euryhaline adaptation mechanism of Crassostrea gigas. PLoS One 8:e58563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanta R, Jayasankar P, Das Mahapatra K, Saha JN, Barman HK (2014) Molecular cloning, characterization and functional assessment of the myosin light polypeptide chain 2 (mylz2) promoter of farmed carp, Labeo rohita. Transgenic Res 23:601–607

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra C, Barman HK, Panda RP, Kumar S, Das V, Mohanta R, Mohapatra SD, Jayasankar P (2010) Cloning of cDNA and prediction of peptide structure of Plzf expressed in the spermatogonial cells of Labeo rohita. Mar Genomics 3:157–163

    Article  PubMed  Google Scholar 

  • Mohapatra C, Patra SK, Panda RP, Mohanta R, Saha A, Saha JN, Das Mahapatra K, Jayasankar P, Barman HK (2014) Gene structure and identification of minimal promoter of Pou2 expressed in spermatogonial cells of rohu carp, Labeo rohita. Mol Biol Rep 41:4123–4132

    Article  CAS  PubMed  Google Scholar 

  • Mohd-Shamsudin MI, Kang Y, Lili Z, Tan TT, Kwong QB, Liu H, Zhang G, Othman RY, Bhassu S (2013) In-depth tanscriptomic analysis on giant freshwater prawns. PLoS One 8:e60839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Liu Y, Hirata D, Namba H, Harada S, Hirokawa T, Miyakawa T (1993) Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J 12:4063–4071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak S, Singh SK, Ramaiah N, Sreepada RA (2010) Identification of upregulated immune-related genes in Vibrio harveyi challenged Penaeus monodon postlarvae. Fish Shellfish Immunol 29:544–549

    Article  CAS  PubMed  Google Scholar 

  • New MB (2002) Farming freshwater prawns. A manual for the culture of the giant river prawn (Macrobrachium rosenbergii). FAO Fisheries Technical Paper 428

  • New MB, Valenti WC (2000) Freshwater prawn culture. The farming of Macrobrachium rosenbergii. Aquaculture 203:399–400

    Google Scholar 

  • Nguyen Thanh H, Zhao L, Liu Q (2014) De novo transcriptome sequencing analysis and comparison of differentially expressed genes (DEGs) in Macrobrachium rosenbergii in China. PLoS One 9:e109656

    Article  PubMed  PubMed Central  Google Scholar 

  • Paidhungat M, Garrett S (1997) A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol Cell Biol 17:6339–6347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda RP, Barman HK, Mohapatra C (2011) Isolation of enriched carp spermatogonial stem cells from Labeo rohita testis for in vitro propagation. Theriogenology 76:241–251

    Article  CAS  PubMed  Google Scholar 

  • Panda RP, Chakrapani V, Patra SK, Saha JN, Jayasankar P, Kar B, Sahoo PK, Barman HK (2014) First evidence of comparative responses of Toll-like receptor 22 (TLR22) to relatively resistant and susceptible Indian farmed carps to Argulus siamensis infection. Dev Comp Immunol 47:25–35

    Article  CAS  PubMed  Google Scholar 

  • Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomics 284:121–136

    Article  CAS  PubMed  Google Scholar 

  • Rajesh S, Kiruthika J, Ponniah AG, Shekhar MS (2012) Identification, cloning and expression analysis of Catechol-O-methyltransferase (COMT) gene from shrimp, Penaeus monodon and its relevance to salinity stress. Fish Shellfish Immunol 32:693–699

    Article  CAS  PubMed  Google Scholar 

  • Robinson N, Sahoo PK, Baranski M, Das Mahapatra K, Saha JN, Das S, Mishra Y, Das P, Barman HK, Eknath AE (2012) Expressed sequences and polymorphisms in rohu carp (Labeo rohita, Hamilton) revealed by mRNA-seq. Mar Biotechnol (NY) 14:620–633

    Article  CAS  Google Scholar 

  • Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 12:159–162

    Article  CAS  PubMed  Google Scholar 

  • Ruffalo M, LaFramboise T, Koyuturk M (2011) Comparative analysis of algorithms for next-generation sequencing read alignment. Bioinformatics 27:2790–2796

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Hirano T (1993) Expression of insulin-like growth factor I gene in osmoregulatory organs during seawater adaptation of the salmonid fish: possible mode of osmoregulatory action of growth hormone. Proc Natl Acad Sci USA 90:1912–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Ogawa S, Nishiyama Y, Godo W, Takahashi H (2013) Osmolality and ionic status of hemolymph and branchial Na+/K+-ATPase in adult mitten crab during seawater adaptation. HOAJ Biol 2:5

    Article  Google Scholar 

  • Santos CA, Blanck DV, de Freitas PD (2014) RNA-seq as a powerful tool for penaeid shrimp genetic progress. Front Genet 5:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaterian J, Georges F, Hussain A, Waterer D, De Jong H, Tanino KK (2005) Root to shoot communication and abscisic acid in calreticulin (CR) gene expression and salt-stress tolerance in grafted diploid potato clones. Environ Exp Bot 53:323–332

    Article  CAS  Google Scholar 

  • Sookruksawong S, Sun F, Liu Z, Tassanakajon A (2013) RNA-Seq analysis reveals genes associated with resistance to Taura syndrome virus (TSV) in the Pacific white shrimp Litopenaeus vannamei. Dev Comp Immunol 41:523–533

    Article  CAS  PubMed  Google Scholar 

  • Tidwell JH, Coyle S, Durborow RM, Dasgupta S, Wurts WA, Wynne F, Bright LA, Van Arnum A (2002) Grow out of freshwater prawns in Kentucky Ponds. Kentucky State Univ Aqua Prog 44

  • Ventura T, Manor R, Aflalo ED, Chalifa-Caspi V, Weil S, Sharabi O, Sagi A (2013) Post-embryonic transcriptomes of the prawn Macrobrachium rosenbergii: multigenic succession through metamorphosis. PLoS One 8:e55322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89:3–9

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Liu Y (2011) Gene expression profiles of the swimming crab Portunus trituberculatus exposed to salinity stress. Mar Biol 158:2161

    Article  CAS  Google Scholar 

  • Xu J, Ji P, Wang B, Zhao L, Wang J, Zhao Z, Zhang Y, Li J, Xu P, Sun X (2013) Transcriptome sequencing and analysis of wild Amur Ide (Leuciscus waleckii) inhabiting an extreme alkaline-saline lake reveals insights into stress adaptation. PLoS One 8:e59703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Yu H, Kong L, Li Q (2012) Transcriptomic responses to salinity stress in the Pacific oyster Crassostrea gigas. PLoS One 7:e46244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwerger K, Hirt H (2001) Recent advances in plant MAP kinase signalling. Biol Chem 382:1123–1131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank M/s Genotypic Technology Private Limited, Bangalore, India for providing us Illumina GAIIx platform and data analysis pipeline. Thanks are due to the Director, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India for providing facilities.

Author contribution

Conceived and designed experiments HKB, PJ and JKS. Performed the experiment and analyzed data: VC, SKP, SDM, KDR, SN, and UD. Wrote the manuscript VC, SKP, KDR and HKB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirak K. Barman.

Ethics declarations

Conflict of interest

Vemulawada Chakrapani, Swagat K. Patra, Shibani D. Mohapatra, Kiran D. Rasal, Uday Deshpande, Swapnarani Nayak, Jitendra K. Sundaray, Pallipuram Jayasankar, and Hirak K. Barman declares that they have no conflict of interest.

Ethical approval

All experiments involving prawns (M. rosenbergii) were approved by the Ethical Committee of the ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 3064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrapani, V., Patra, S.K., Mohapatra, S.D. et al. Comparative transcriptomic profiling of larvae and post-larvae of Macrobrachium rosenbergii in response to metamorphosis and salinity exposure. Genes Genom 38, 1061–1076 (2016). https://doi.org/10.1007/s13258-016-0452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0452-0

Keywords

Navigation