Skip to main content
Log in

Discovery and profiling of microRNAs and their targets in Paulownia ‘Yuza 1’ plants via high-throughput sequencing and degradome analysis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Polyploid breeding is an effective method that has been used widely for the development of new varieties of plants. MicroRNAs (miRNAs) are a class of endogenous small RNAs that regulate gene expression at the post-transcriptional level. To understand the functions of miRNAs in autotetraploid and diploid Paulownia ‘Yuza 1’ plants, two small RNA libraries and two degradome sequencing libraries of the autotetraploid and the corresponding diploid plants were constructed and analyzed. A total of 49 conserved miRNAs that were grouped into 15 families, and 25 novel miRNAs were obtained from two sRNA libraries. Among these miRNAs, 28 were differentially expressed at a significant level in the autotetraploid relative to the diploid. Moreover, the miRNA target genes were identified by degradome sequencing and some of the differently expressed miRNAs and their target genes were validated by quantitative RT-PCR analysis. This study has provided valuable information on P. ‘Yuza 1’ miRNAs and their targets, which will enrich the Paulownia miRNA information resources and will contribute to our understanding of miRNA-mediated regulation in autotetraploid Paulownia plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    CAS  PubMed  Google Scholar 

  • Chen C, Ridzon D, Broomer A, Zhou Z, Lee D, Nguyen J, Barbisin M, Xu N, Mahuvakar V, Andersen M et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  CAS  PubMed  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan G, Zhai X, Niu S, Ren Y (2014) Dynamic expression of novel and conserved microRNAs and their targets in diploid and tetraploid of Paulownia tomentosa. Biochimie 102:68–77

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Nesbitt T, Frary A, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • German MA, Pillay M, Jeong D, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis L, Nobuta K, German R et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotechnol 26:941–946

    Article  CAS  Google Scholar 

  • Ipekci Z, Gozukirmizi N (2003) Direct somatic embryogenesis and synthetic seed production from Paulownia elongata. Plant Cell Rep 22:16–24

    Article  CAS  PubMed  Google Scholar 

  • Jin W, Li N, Zhang B, Wu F, Li W, Guo A, Deng Z (2008) Identification and verification of microRNA in wheat (Triticum aestivum). J Plant Res 121:351–355

    Article  CAS  PubMed  Google Scholar 

  • Li X-Q (2016) Natural attributes and agricultural implications of somatic genome variation. Curr Iss Mol Biol 20:29–46

    Google Scholar 

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Chen J, Huang Y, Hsu C, Lu H, Chou M, Chen L, Ou C, Liao D, Yeh Y et al (2013) Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families. Plant Mol Biol 82:193–204

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  • Mackowiak SD (2011) Identification of novel and known miRNAs in deep-sequencing data with miRDeep2. Curr Protoc Bioinform. doi:10.1002/0471250953.bi1210s36

    Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36

    Article  CAS  PubMed  Google Scholar 

  • Mao W, Li Z, Xia X, Li Y, Yu J (2012) A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber. PLos One 7:e33040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers B, Axtell M, Bartel B, Bartel D, Baulcombe D, Bowman J, Cao X, Carrington J, Chen X, Green P et al (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu S, Fn G, Xu E, Deng M, Zhao Z, Dong Y (2014a) Transcriptome/Degradome-wide discovery of microRNAs and transcript targets in two Paulownia australis Genotypes. PLoS ONE 9:e106736

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu S, Fan G, Zhao Z, Deng M, Dong Y (2014b) High-throughput sequencing and degradome analysis reveal microRNA differential expression profiles and their targets in Paulownia fortunei. Plant Cell Tiss Organ Cult 119:457–468

    Article  CAS  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  CAS  PubMed  Google Scholar 

  • Palin AC, Ramachandran V, Acharya S, Lewis DB (2013) Human neonatal naive CD4+T cells have enhanced activation-dependent signaling regulated by the microRNA miR-181a. J Immunol 190:2682–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng T, Lv Q, Zhang J, Li J, Du Y, Zhao Q (2011) Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). J Exp Bot 62:4943–4954

    Article  CAS  PubMed  Google Scholar 

  • Ramsey J (2011) Polyploidy and ecological adaptation in wild yarrow. Proc Natl Acad Sci USA 108:7096–7101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Func Integr Genomic 12:327–339

    Article  CAS  Google Scholar 

  • Sarvepalli K, Nath U (2011) Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J 67:595–607

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Tian L, Lee H, Wei N, Jiang H, Watson B, Madlung A, Osborn T, Doerge R, Comai L et al (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009) Rice MicroRNA effector complexes and targets. Plant Cell 21:3421–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai X, Zhang X, Zhao Z, Deng M, Fan G (2012) Study on Wood Physical Properties of Tetraploid Paulownia fortunei. J Henan Agric Univ 46:651–654

    Google Scholar 

  • Zhang Q, Zhang Z, Lin SZ, Zheng HQ, Lin YZ, An XM, Li Y, Li H (2008) Characterization of resistance gene analogs with a nucleotide binding site isolated from a triploid white poplar. Plant Biol 10:310–322

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhai X, Fan G, Deng M, Zhao Z (2012) Observation on microstructure of leaves and stress tolerance analysis of different Tetraploid Paulownia. J Henan Agric Univ 46:646–650

    Google Scholar 

  • Zhao M, Ding H, Zhu J, Zhang F, Li W (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant, Cell Environ 35:86–99

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 30271082, 30571496, U1204309), by the Outstanding Talents Project of Henan Province (Grant No.122101110700) and by Science and Technology Innovation Team Project of Zhengzhou City (Grant No. 121PCXTD515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Fan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13258_2016_420_MOESM1_ESM.doc

Supplementary material 1 (DOC 150 kb) Fig S1 Hairpin structures of Paulownia ‘Yuza 1’ miRNAs. (miRNAs marked by yellow, miRNAs* marked by green)

Supplementary material 2 (DOC 39 kb) Table S1 The primers used for qRT-PCR

13258_2016_420_MOESM3_ESM.xls

Supplementary material 3 (XLS 32 kb) Table S2 Conserved miRNAs of Paulownia ‘Yuza 1’. (ath/aly Arabidopsis;ptc Populus trichocarp;osa Oryza sativa;zma Zea mays;gma Glycine max; + 2 mismatches; ++ 1 mismatches; +++ 0 mismatch)

13258_2016_420_MOESM4_ESM.xls

Supplementary material 4 (XLS 33 kb) Table S3 Novel miRNAs of Paulownia ‘Yuza 1’. (L Lenth;Ath Arabidopsis thaliana;Osa Oryza sativa;Egr Eucalyptus; × not matched to genomes; †matched to genomes)

Supplementary material 5 (XLS 29 kb) Table S4 Target gene identification and annotation

Supplementary material 6 (DOC 30 kb) Table S5 The comparison of conserved miRNAs numbers among four Paulownia species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Niu, S., Ren, Y. et al. Discovery and profiling of microRNAs and their targets in Paulownia ‘Yuza 1’ plants via high-throughput sequencing and degradome analysis. Genes Genom 38, 757–766 (2016). https://doi.org/10.1007/s13258-016-0420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0420-8

Keywords

Navigation